1、教学目标教学目标:1、通过实例,了解集合的含义,体会元素与集合的属于关系;、通过实例,了解集合的含义,体会元素与集合的属于关系;2、在具体的情景中,了解空集的含义,理解集合中元素的三个、在具体的情景中,了解空集的含义,理解集合中元素的三个特征;特征;3、掌握几个常见数集的符号表示。、掌握几个常见数集的符号表示。集合的概念集合的概念 1.集合的概念 集合是数学中一个不定义的原始概念,这与点、直线、平面是几何中的原始的不定义概念相类似一般地,我们看到的、听到的、触摸到的、闻到的、想到的各种各样的事物或一些抽象的符号,都可以看作_ 一些能够确定的不同的对象集在一起就构成一个_,也简称集集合中的每个对
2、象叫做这个集合的_它具有三个特征: (1)_;(2)_;(3)_对象 集合 元素 确定性 互异性 无序性 一、知识梳理一、知识梳理 2元素与集合的关系 a是集合A的元素,则记为_;若a不是集合A的元素,则记为_aA a A 3集合中元素的特征 (1)_,即对于一个给定的集合,任何一个对象或者是这个集合中的元素,或者不是它的元素,两种情况必有一种且只有一种成立 (2)_,即集合中的元素是互不相同的,也就是说集合中的元素不能重复出现,相同的对象归入一个集合时,只能算作这个集合的一个元素 (3)_,即集合中元素的书写次序不受限制,也就是集合中的元素相互交换次序所得的集合与原来的集合是同一个集合确定性
3、 互异性 无序性 4集合的分类 含有有限个元素的集合称为_;含有无限个元素的集合称为_;不含任何元素的集合称为_,记作_ 5特殊数集及符号 自然数集记作_,正整数集记作_或_,整数集记作_,有理数集记作_,实数集记作_有限集 无限集空集 NN*NZQR判断下列各组对象能否组成一个集合: (1)9以内的正偶数; (2)篮球打得好的人; (3)2012年伦敦奥运会的所有参赛运动员; (4)高一(1)班所有高个子同学 分析判断各组对象是否满足确定性,进而判断能否构成集合 对集合概念的理解解析(2)中的“篮球打得好”,(4)中的“高个子”标准不明确,即对象不确定,所以不能构成集合对于(1)(3),其中
4、的对象都是确定的,所以能构成集合二、例题解析二、例题解析例题例题1、 有下列4组对象:(1)某校2014级新生;(2)小于0的自然数;(3)所有数学难题;(4)接近1的数其中能构成集合的是_ 答案(1)(2) 解析集合中的元素具有确定性(1)中对于任意一个学生可以明确地判断出是不是该校2014级新生;(2)为空集;(3)、(4)中的对象不确定,故(1)、(2)能构成集合,(3)、(4)不能构成集合.练习练习1:集合A是含有两个不同实数a3,2a1的集合,求实数a的取值范围 分析根据集合中元素的互异性,得a32a1,可求出实数a的取值范围 解析根据题意可知A中有两个元素,由集合中元素的互异性,可
5、得a32a1,所以a2. 即实数a的取值范围为aR,a2. 集合中元素的特性例题例题2、 若一个集合中的三个元素a,b,c是ABC的三边长,则ABC一定不是() A锐角三角形B等腰三角形 C钝角三角形D直角三角形 答案B 解析根据集合中元素的互异性,可知三角形的三边长互不相等,故选B.练习练习2、已知集合A由a2,(a1)2,a23a3三个元素构成,且1A,求实数a的值 分析由于1A,故应分a21,(a1)21,a23a31三种情况讨论,且在求得a的值之后,应验证是否满足集合中元素的互异性 元素与集合的关系例题例题3、 解析若a21,则a1,此时A中有1,0,1,不符合要求; 若(a1)21,
6、则a0或2.当a0时,A中有2,1,3,符合要求;当a2时,A中有0,1,1,不符合要求; 若a23a31,则a1或2.当a1时,A中有1,0,1,不符合要求;当a2时,A中有0,1,1,不符合要求 综上所述,实数a的值为0. 已知集合A中含有元素1,3,a2a,a1,若aA,求实数a的值 误解若a2aa,则a0; 若a1a,则a . 故实数a的值为0,1,3. 辨析本题忽略了当a0或a1时,集合A中的元素是否满足互异性,所以出现错误练习练习3、 正解当a1时,a2aa12,不满足集合元素的互异性,舍去; 当a3时,a2a12,a14,满足题意; 当aa2a,即a0时,a11,不满足集合元素的互异性,舍去; 当aa1时,a不存在 综上所述,实数a的值为3.已知集合A是方程ax22x10的解集 (1)若A ,求a的值; (2)若A中只有一个元素,求a的值 分析解本题的关键是由A ,得方程ax22x10无实根;由A中只有一个元素,得方程ax22x10有且只有一个实根,或有两个相等实根 方程解集的问题例题例题4、三、课堂小结三、课堂小结1、集合的概念;、集合的概念;2、集合种元素的特征;、集合种元素的特征;3、元素与集合的关系、元素与集合的关系四、作业四、作业