1、土 体 本 构 模 型1PPT课件本构关系:材料的应力本构关系:材料的应力应变应变(时间时间)关系关系本构模型:反映材料的应力应变本构模型:反映材料的应力应变( (时间时间) )关系的数关系的数学模型,即数学表达式。当然,这种数学表达式可能学模型,即数学表达式。当然,这种数学表达式可能很复杂,而且包括一系列的数学表达式。很复杂,而且包括一系列的数学表达式。E2PPT课件1.应力和应变 Txzyzxyzyxppp(一)应力和应变分量的几种表示方法一)应力和应变分量的几种表示方法1.一般分量一般分量 土体中一点的应力状态,可以用处于该点的正六面体单元的表面上的6个(9个)应力分量来表示,即3个正应
2、力分量 ,3个剪应力分量 写成矩阵形式为zyx,zxyzxy, Tzxyzxyzyx应力偏量(1)矩阵或向量表示法偏应力3PPT课件1.应力和应变(一)应力和应变分量的几种表示方法一)应力和应变分量的几种表示方法1.一般分量图51中表示了单元体上的这6个应力分量。相应地,也有6个应变分量,以矩阵表示为Tzxyzxyzyx(1)矩阵或向量表示法4PPT课件1.1.应力和应变应力和应变图5-1(2)张量表示法如果某些量依赖于坐标轴的选取,并且,当座标变换时,它们的变换具有某种指定的形式,则这些量总称为张量。一点的应力分量就总称为应力张量。ijijijzzyzxyzyyxxzxyx在进行公式推导时,
3、一般尽量用一种表示方法:矩阵或张量,不宜混用5PPT课件1.1.应力和应变应力和应变(2)张量表示法ijSpppzzyzxyzyyxxzxyx注意:在进行公式推导时,一般尽量用一种表示方法:矩阵或张量,不宜混用偏应力张量6PPT课件 在弹性力学中,法向应力和应变以拉为正,压为负;而土体一般不能受拉,土力学中讨论的地基应力、土压力等,都是以压为正,拉为负。因此,土力学中,应力应变分量的正负规定就与弹性力学相反,即正面上的负向应力为正,负面上的正向应力为正。不仅正应力如此,剪应力也如此,以保持一致,并能套用弹性力学公式。 注意:注意: 1.1.应力和应变应力和应变7PPT课件2. 主应力应变分量主
4、应力应变分量 在正六面体单元中可以找到3个互相垂直的面,其上剪应力为0,只作用有正应力。这样的面叫正应力面,所作用的正应力叫主应力。3个面上的主应力按大小排列,分别为大主应力 、中主应力 和小主应力 。1231.1.应力和应变应力和应变应力状态表示方法之一:主应力方向余弦主应力与坐标轴的选择无关,应变也可用三个主应变分量表示,矩阵形式 Ti3218PPT课件 将坐标系的三个轴顺着三个主应力方向放,分别以1,2,3表示,如图5-2所示。再对这个坐标系的8个挂限分别作等倾面。8个挂限的等倾面围成了一个正八面体。这些等倾面叫八面体面。根据力的平衡关系可以推得正八面体面上的正应力和剪应力分别为 3.
5、八面体应力和应变八面体应力和应变图5-21.1.应力和应变应力和应变32131OCT21323222131OCT9PPT课件21323222131OCT 剪应力OCT作用在八面体面上还有个方向问题。这决定于中主应力 接近大主应力 还是小主应力 。 与应力相应,还有八面体面上的应变,正应变和剪应变分别为 21332131OCT21323222132OCT1.1.应力和应变应力和应变10PPT课件 在土体本构模型理论中,常常也用球应力、偏应力以及或作为应力分量。球应力也称为平均正应力以p表示4. 球应力、偏应力及相应应变球应力、偏应力及相应应变32131p偏应力又叫广义剪应力,以q表示213232
6、22121q1.1.应力和应变应力和应变注意:这里的偏应力和Sij的区别,建议这里不用偏应力)(31zyx注意:此式也可用6个应力分量表示11PPT课件p 和q也可以用八面体应力来表示,如下p OCTOCTq23 反映了复杂应力状态下受剪的程度,因此常用来表示剪应力。当 时,如轴对称的三轴仪试样受力情况, 32311.1.应力和应变应力和应变12PPT课件可以推知相应的应变分量体积应变:321v偏应变: 其中 表示了复杂受力状态下的剪切变形。对于轴对称三轴试样的变形,有 s32312v332131vs1.1.应力和应变应力和应变231232221)()()(32s13PPT课件 球应力和偏应力
7、,以及相应的应变分量,实际上与八面体应力和应变是等效的,仅仅是系数不同。但在分析能量时,要简单得多。可以推得: 体积变形能 :vvpW形变能 :ssqW1.1.应力和应变应力和应变14PPT课件 对于一组确定的p和q,可以有许多种主应力分量的组合,解是不确定的。因此,要有第三个分量。第三个分量常取应力罗德(Lode)参数 313123121322 式中 , , 为三个应力摩尔圆的直径,见图5-3 3221311.1.应力和应变应力和应变213132b还有一个参数b也反映了中主应力接近大主应力的程度。若 ,b=1;若 ,b=0123215PPT课件图5-3相应地,也有应变罗德参数3131221.
8、1.应力和应变应力和应变16PPT课件5. 应力不变量应力不变量第一应力不变量: 3211I第二应力不变量:1332212I第三应力不变量:3213I 此外,还有下面两个偏应力不变量,它们须与第一应力不变量相结合形成三个独立的应力分量:1.1.应力和应变应力和应变第二偏应力不变量 :第三偏应力不变量 :213232221612J2131323212713222J不随坐标轴的选取而改变表示一点应力状态的方法?17PPT课件(二)应力空间和应力路径1应力和应变空间 为了表示应力状态,表示各应力分量的数值,常常以应力分量为坐标轴形成一个空间,叫做应力空间。该空间内的一点的几个坐标值就是相应的应力分量
9、。 如果应力分量取三个主应力 , 和 ,以三个主应力分量为坐标轴构成一个直角坐标系,叫主应力空间。这个空间内一点有三个坐标值,就代表了实际土体中一点的某种应力状态。图5-4中的M点代表了应力状态 , 和 。123M1M2M31.1.应力和应变应力和应变18PPT课件图5-41.1.应力和应变应力和应变弹塑性力学:Pi平面为过原点与空间主对角线垂直的平面平面19PPT课件 在主应力空间内,法线与空间主对角线重合的等倾面,被叫做 面。所谓空间主对角线,就是与3个坐标轴的夹角都相等的线。主应力空间中,在该线上有 321 八面体面是几何空间(长度坐标系)内的面,面是在应力空间内的面。两者坐标系不同,物
10、理概念不同。再者,八面体面在几何空间内的八个挂限都有,而 面只存在于应力空间内的第一挂限和与其相对的挂限,其它挂限内的等倾面并不是面。空间主对角线也只存在于这两个挂限。1.1.应力和应变应力和应变20PPT课件 利用面可以较好地反映应力状态。图5-4中点M的坐标代表主应力分量。通过M点作面。它到原点的距离为pOO331321在面上,M到空间主对角线的距离OM21323222131q32 它们分别与应力分量p和q有关。而点M在 面内的方位可反映第三个分量。将图5-4中的三个主应力坐标轴,以及代表应力状态的点M 投影到 面上,如图5-5所示。 1.1.应力和应变应力和应变21PPT课件 在该面上放
11、一个二维的直角坐标系,令Y轴与2轴重合,X轴在1 的那一侧。定义到X轴的转角叫应力罗德角。它就是与第三应力分量有关的参数。可以证明,它与罗德参数间的关系为:3tan1.1.应力和应变应力和应变22PPT课件应力空间还可以用其他形式的应力分量为坐标。如果以,和六个应力分量为坐标,则应力空间是六维空间,无法用图形表示,仅可以作抽象的理解。 p-q 平面1.1.应力和应变应力和应变23PPT课件 如果忽略第三应力不变量或应力罗德角对变形的影响,可以只用、两个分量来构成二维的应力空间,叫pq平面,如图5-6所示。在后面的本构模型理论中,常常会用到这种平面。图5-61.1.应力和应变应力和应变24PPT
12、课件图5-61.1.应力和应变应力和应变表示应力状态或应力路径也有优点P204qp )(2131p)(2131q二维问题中,25PPT课件 与应力空间相应,以应变分量为坐标轴形成一个空间,叫做应变空间。该空间内的一点的几个坐标值就是应变分量。图5-8所示为主应变空间。它的三个坐标轴分别为 , 和 。123图5-81.1.应力和应变应力和应变26PPT课件2.应力路径 在应力空间内,代表应力状态的点移动的轨迹,叫应力路径。它表示应力变化的过程,或者加荷的方式。1.1.应力和应变应力和应变27PPT课件图91.1.应力和应变应力和应变设土体中一点初始应力状态如图5-9应力空间内点所示,受力后变化到
13、。从到,可以有各种方式,如、和按比例增加;初期增加得多,和增加得少,而后期反过来。对于某种加荷方式,代表应力状态的点将从沿某种轨迹移动到。加荷过程中,不同的加荷方式可以用不同的应力路径来表示。 28PPT课件更常用的是用p-q平面的应力路径1.1.应力和应变应力和应变与其相应,当然也有应变路径。普通三轴应力状态下pq29PPT课件(三)应力应变关系矩阵kD D广义虎克定律增量形式)()()(yxzzzxyyzyxxEEEEEE30PPT课件(三)应力应变关系矩阵广义虎克定律 DDDD31PPT课件(三)应力应变关系矩阵 复杂应力状态下的应力应变关系是多元化的,要表示出多元素与多元素之间的关系,
14、就要用张量或矩阵。常用到的增量形式的应力应变关系的矩阵为D 式中D叫刚度矩阵,如果应力和应变分量取一般形式,各有6个分量,则矩阵D为66,共36个元素。如果用主应力和主应变分量,则矩阵D为33,共9个元素。二维问题的应力分量为 ,应变分量为 ,因此其矩阵D也是3 3 的,将上式展开可写成: xyyx,xyyx,1.1.应力和应变应力和应变32PPT课件xyyxxyyxDDDDDDDDD333231232221131211 对于任一元素D i j,其意义为,要产生单位应变增量 而其它应变增量为0时,在应施加的应力增量 中的分量 即为Dij。显然,D i j 的值愈大,材料愈难变形,表示材料刚度愈
15、大。ji1.1.应力和应变应力和应变xyyxxDDD13121133PPT课件 应力应变关系也可写成相反的形式,即: C 式中C叫柔度矩阵。对于二维问题,将其展开,可写成xyyxxyyxCCCCCCCCC333231232221131211 在复杂受力条件下,建立土的应力应变关系,实际上就是要给出矩阵C或D。 C或D互为逆矩阵1.1.应力和应变应力和应变Cij越大,材料越软xyyxxCCC13121134PPT课件2.2.土体三维变形的试验土体三维变形的试验三轴仪应力变形试验 三轴仪的构造示意如图5-10所示。图5-1035PPT课件仪器构造: 中间为圆柱形土样。其下为透水石,透水石放在三轴仪
16、底座上;试样顶部也放有透水石再上面是金属的试样帽。试验时,土样的上下两端与透水石接触处,分别放置滤纸。试样外侧包有薄橡皮膜,膜的下端扎紧于底座,上端扎紧于试样帽。所谓压力室就是能够施加水压力或气压力的密室,侧向为有机玻璃筒,上部为金属顶盖,下部固定于底座,其间设有密封圈防止漏水,顶盖的中央为一金属活塞杆传递竖向荷载。 2.2.土体三维变形试验土体三维变形试验36PPT课件实验原理: 试验时在压力室中充水并加压,这一压力叫围压。围压通过橡皮膜从侧向传到试样上,也通过试样帽从竖向作用给土样,此时试样受各向相等的压力:小主应力。待固结稳定后再用加压设备竖向加荷。土样上增加的竖向应力叫偏应力q(轴向附
17、件应力),此时竖向应力为大主应力,1+q。由于土样是圆柱形的,故中主应力2 。在加竖向荷载时,可以用测微表量测试样的竖向变形量,由此可推得轴向应变a /L0,式中L0为初始试样高度。0L2.2.土体三维变形试验土体三维变形试验37PPT课件 三轴仪中的试样是圆柱形的,其受力和变形是轴对称的,它有两个方向的应力 和 ,同时测得两种应变 和 ,由它们可推出侧向应变 13avr2avr2.2.土体三维变形试验土体三维变形试验38PPT课件 三轴仪试样的应力变形状态是轴对称的,而实际工程问题中土体应力应变状态往往并非轴对称的,因此需要有相应的试验设备来研究更加复杂的应力状态。 2.2.土体三维变形试验
18、土体三维变形试验39PPT课件2.平面应变试验岩土工程许多问题可以简化为平面应变问题平面问题 注意:(1)三个方向的尺寸;小主应力方向尺寸应较小,试样才能达到破坏; (2)试验仪器中难以处理的问题;不同方向的加荷板打架!2.2.土体三维变形试验土体三维变形试验 2 1 3 40PPT课件3.真三轴试验 真三轴仪的试样为立方体,从三个方向分别施加三个主应力分量。由于加荷方式的不同,产生了不同型式的真三轴仪: ()三个方向全为刚性板加荷。2.2.土体三维变形试验土体三维变形试验 () 方向为刚性板加荷,另两方向为气压或液压柔性加荷。 () 方向柔性加荷,而 和 方向为刚性板。1312 2 1 3
19、41PPT课件 图5-12是河海大学的真三轴仪示意,属于第()种类型。 图5-12a.整体结构b.加荷与变形示意2.2.土体三维变形试验土体三维变形试验42PPT课件实验原理 2方向的传力块B是由多层金属板与橡皮相间复合而成。在竖向该传力块可与试样同步压缩,而在2向靠金属板传力保持刚性。竖向荷载由试样和传力块共同承担,但荷载2.2.土体三维变形试验土体三维变形试验传感器只量测试样上的荷载,从而可算得 1。传压块B上下有滚轮,可适应试样在2向的变形。这样2方向的加荷板不要予留空隙,可使2均匀作用于试样,且试样自始至终规整。小主应力则用气压施加。43PPT课件4.空心扭剪仪土样P1P2a.空心圆柱
20、试样b.扭剪仪整体结构图5-132.2.土体三维变形试验土体三维变形试验外室为什么是空心而不用实心?44PPT课件 仪器所用的试样为空心的圆柱体,如图13(a)所示,仪器的整体结构如图13(b)所示。试样被包在内外橡皮膜之中。该仪器可以对试样施加种荷载,径向内压力 、径向外压力 、竖向压力z和环向扭剪应力 ,根据内外径向应力可以推算出环向应力 。1 r2rz2.2.土体三维变形试验土体三维变形试验注意:研究变形与研究强度的土工仪器各有哪些?45PPT课件3.3.土体三向变形的主要规律土体三向变形的主要规律 利用前面所讲的一些土体应力变形试验的仪器进行试验研究可以揭示土体变形的许多规律。这是建立
21、本构模型的依据。 1. 非线性和非弹性 图5-15(a)是金属和混凝土等坚硬材料的轴向拉压曲线,图5-15(b)为土的三轴试验得出的轴向应力 与轴向应变 之间的关系曲线。与金属材料不同的是,初始的直线阶段很短,对于松砂和正常固结粘土,几乎没有直线阶段,加荷一开始就呈非线性。13a46PPT课件 这种非线性变化的产生,是因为除弹性变形以外还出现了不可恢复的塑性变形。土体是松散介质,受力后颗粒之间的位置调整,在荷载卸除后,不能恢复,形成较大的塑性变形。 图15a.金属b.土体3.3.土体三向变形的主要规律土体三向变形的主要规律47PPT课件 如果加荷到某一应力后再卸荷,曲线将如图16所示。为加荷段
22、,为卸荷段。卸荷后能恢复的应变即弹性应变。不可恢复的那部分应变为塑性应变。 图163.3.土体三向变形的主要规律土体三向变形的主要规律48PPT课件 经过一个加荷退荷循环后,再加荷,将如图16中的段所示,它并不与线重合,而存在一个环,叫回滞环。回滞环的存在表示退荷再加荷过程中能量消耗了,要给以能量的补充。再加荷还会产生新的不可恢复的变形,不过同一荷载多次重复后塑性变形逐渐减小。非线性和非弹性是土体变形的突出特点。弹性、塑性、粘性(流变性)3.3.土体三向变形的主要规律土体三向变形的主要规律49PPT课件弹性、塑性、粘性能够恢复的变形;不能恢复的变形;状态随时间而变化的性质3.3.土体三向变形的
23、主要规律土体三向变形的主要规律50PPT课件剪胀性和塑性体积应变 土体受力后会有明显的塑性体积变形。图17为土样在三轴仪中逐步施加各向相等的压力后,再卸除所得到的与体积应变之间的关系曲线 图173.3.土体三向变形的主要规律土体三向变形的主要规律vpevpv51PPT课件 可见存在不可恢复的塑性体积应变 ,而且它往往比弹性体积应变更大。这一点与金属不同,金属塑性变形是由于晶格之间的错动滑移而造成的,只有形状改变,不产生体积变化。金属是很密实的材料,晶格间没有可压缩的孔隙,因此被认为是没有塑性体积变形的。土体的塑性变形也与颗粒的错位滑移有关。这种错动滑移不仅在受剪时发生,受压时也存在。在各向相等
24、的压力作用下,从宏观上来说,是不受剪切的;但在微观上,颗粒间有错动。 3.3.土体三向变形的主要规律土体三向变形的主要规律vp52PPT课件 剪切也会引起塑性体积变形 在三轴仪中对土样施加偏压力 的同时,减小围压 ,并令 ,使球应力保持不变,所得出的应力应变曲线将如图19所示。尽管体积应力不变,但图中仍有体积应变,此时测得的体积应变完全是剪切造成的。在图19()中,体积应变 随偏应力 增大而增大。剪切引起的体积收缩,叫剪缩。软土和松砂常表现为剪缩。 3132313 v313.3.土体三向变形的主要规律土体三向变形的主要规律53PPT课件图5-19ab3.3.土体三向变形的主要规律土体三向变形的
25、主要规律a54PPT课件 在图19()中,开始阶段为剪缩,以后曲线向上弯曲,为负的体积应变,即体积膨胀,这种现象叫做剪胀。紧密砂土,超固结粘土,常表现为剪胀。3.3.土体三向变形的主要规律土体三向变形的主要规律55PPT课件a.松砂b.密砂图5-203.3.土体三向变形的主要规律土体三向变形的主要规律 砂土受剪所产生体积变形可用图20来说明。假定土体沿水平向受剪切。对于松砂,受剪后某些颗粒填入原来的孔隙,体积减小;对于密砂,原来的孔隙体积较小,受剪时一些颗粒必须上抬才能绕过前面的颗粒产生错动滑移,于是体积膨胀。56PPT课件塑性剪应变 土体受剪发生剪应变。剪应变的一部分与骨架的轻度偏斜相对应,
26、荷载卸除后能恢复,是弹性剪应变。另一部分则与颗粒之间的相对错动滑移相联系,荷载卸除后不能恢复,为塑性剪应变。不仅剪应力能引起不仅剪应力能引起剪应变,体积应力也会引起剪应变剪应变,体积应力也会引起剪应变。三轴仪中的土样在应力 和 下变形稳定后,保持 不变而降低 ,见图21(a),则会发现,随着 减小,轴向应变不断增大,直至最后达到破坏。31331333.3.土体三向变形的主要规律土体三向变形的主要规律57PPT课件a.单元体应力变化 c.应力路径 3.3.土体三向变形的主要规律土体三向变形的主要规律331AspBBAqp破坏线AB破坏线b.摩尔圆变化 d.剪应变 等q试验58PPT课件 在这一应
27、力变化过程中,应力摩尔圆直径不变,位置不断向左移动,如图21(b),摩尔圆从移动到。当围压降到一定值,摩尔圆与库仑破裂线相切,土样剪坏,这时剪应变已发展到很大数值。由此可见,球应力的变化确实引起了不可恢复的剪应变。这种应力变化可以用图21(c)中坐标系中的线段来表示。还可点绘出剪应变 s随球应力减小而增加的关系曲线,如图21(d)中的段。3.3.土体三向变形的主要规律土体三向变形的主要规律59PPT课件硬化和软化 三轴试验测得的轴向应力与轴向应变的关系曲线有两种形态。图22()所示曲线有一直上升的趋势直至破坏,这种形状的应力应变关系叫硬化型,软土和松砂表现为这种形态图22(a)3.3.土体三向
28、变形的主要规律土体三向变形的主要规律60PPT课件 图22()所示曲线前面部分是上升的,应力达到某一峰值后转为下降曲线,即应力在降低,而应变却在增加,这种形态叫做软化型。紧密砂和超压密粘土表现为这种形态。图22(b)3.3.土体三向变形的主要规律土体三向变形的主要规律61PPT课件 将转换为,点绘曲线,其形式与图22也相似,存在硬化和软化两种形式。对于其他剪切试验(如直剪、单剪),得出的关系曲线也有硬化和软化的区别。 3.3.土体三向变形的主要规律土体三向变形的主要规律62PPT课件应力路径对变形的影响 岩土材料存在较大的塑性变形。沿不同的应力路径加荷,各阶段的塑性变形增量不同,累积起来,就有
29、不同的应变总量。这就是应力路径对变形的影响。图23ab3.3.土体三向变形的主要规律土体三向变形的主要规律63PPT课件虚线表示排水试验的有效应力路径。实线表示先做不排水试验,其有效应力路径为,达到接近破坏的点后,排水固结,保持不变而增加,应力路径为。两种应力路径初始和终了应力状态相同,两种路径所对的轴向应变大不同。实线,因点接近破坏线,必然产生较大的轴向应变,最终必然较大如图23()中的线所示。虚线远离破坏线,其轴向应变必然较小,如图23()中的1线所示。3.3.土体三向变形的主要规律土体三向变形的主要规律64PPT课件应力历史对变形的影响应力历史指历史上的应力路径。由于塑性变形不可恢复,历
30、史上发生的变形将保存和积累起来。它无疑会影响今后的变形。 图24中,、两点具有相同的应力,然而点处于初始加荷曲线上,点处于再加荷曲线上,两点对应不同的,它们所处应力应变关系曲线的斜率也不同。如果施加同样的荷载增量,则对应状态的土体应变增量大,而对应状态的土体应变增量小。因、两点有着不同的应力历史,加荷后就有不同的变形。超固结土比正常固结土变形小,也是这个缘故。3.3.土体三向变形的主要规律土体三向变形的主要规律65PPT课件图243.3.土体三向变形的主要规律土体三向变形的主要规律又如,压缩试验中,Pc的影响图24中,、两点具有相同的应力,然而点处于初始加荷曲线上,点处于再加荷曲线上,两点对应
31、不同的,它们所处应力应变关系曲线的斜率也不同。如果施加同样的荷载增量,则对应状态的土体应变增量大,而对应状态的土体应变增量小。因、两点有着不同的应力历史,加荷后就有不同的变形。超固结土比正常固结土变形小,也是这个缘故。66PPT课件各向异性 地基土一般是水平向成层。由于土沉积过程中水平和竖直方向条件不同,土的结构存在着差异,使土体在许多方面表现为各向异性。应力应变关系也不例外,这种叫原生各向异性。此外,各向应力状态不同,还能引起新的各向异性。重塑土本来不存在土体结构上的两向差异,但只要各向应力不等,在应力应变关系上就会表现为各向异性,称为应力引起的各向异性。-次生各向异性3.3.土体三向变形的
32、主要规律土体三向变形的主要规律67PPT课件ab图25 应力引起的各向异性3.3.土体三向变形的主要规律土体三向变形的主要规律ABfxy13A3A1A平面应变条件下,从大主应力和小主应力方向分别加载68PPT课件刚度矩阵或柔度矩阵为非对称:C12C21; C11=C223.3.土体三向变形的主要规律土体三向变形的主要规律13A3A1AxyyxxyyxCCCCCCCCC33323123222113121169PPT课件8、固结应力对变形的影响 高压三轴试验资料表明,土体在高围压(固结应力)下的变形性状与低围压情况下有所不同。主要有如下三个方面: (1)强度包线不呈直线,而是呈向下微弯的曲线,如图
33、28(a)所示。这表示有效强度指标 随着固结压力的增加而降低了。为了反映这种变化,可以用折线来代替曲线,也就是在不同的压力范围用不同的强度指标。如图28(b)所示,压力低于 A,用 1,压力高于 A,用 2。 3.3.土体三向变形的主要规律土体三向变形的主要规律ap30lg70PPT课件8、固结应力对变形的影响3.3.土体三向变形的主要规律土体三向变形的主要规律ap30lgf0 f如何确定?71PPT课件 (2)有些土,如紧密砂,在低压力下受剪时体积会发生膨胀。而在高压力下,所有土都表现为剪缩,如图29中所示的v-a曲线。 (3)软化现象一般也是在低压力下表现出来的。在高压下,通常(1-3)-
34、 a曲线是硬化型的,如图29所示。3.3.土体三向变形的主要规律土体三向变形的主要规律72PPT课件 图29 不同围压下的应力应变曲线3.3.土体三向变形的主要规律土体三向变形的主要规律73PPT课件3.3.土体三向变形的主要规律土体三向变形的主要规律9、中主应力对变形的影响中主应力对强度影响平面应变条件下测定的摩擦角比轴对称条件下大35度;中主应力对应力应变曲线有影响b=0; b=0.5; b=1.0 74PPT课件4.4.弹性非线性模型弹性非线性模型 实际工程中的初始应力状态、应力增量和应力路径是千变万化的,试验无法模拟这种复杂的变化。因此,必须通过假定、推理、验证,建立某种符合实际变形规
35、律的数学计算方法数学模型,将少量的特定条件下试验得出的结果推广到一般,运用于工程。这种数学模型就是本构模型。75PPT课件4.4.弹性非线性模型弹性非线性模型线性弹性模型(广义虎克定律)3213213211111111EEEEEEEEEEzyzyzxzxyzyzyxzzzxyyzyxxGGGEEE111111 D C76PPT课件4.4.弹性非线性模型弹性非线性模型线性弹性模型(广义虎克定律) D 210000002100000021000000100010001)21)(1 (vvvvvvED GGGGKGKGKGKGKGKGKGKGKD000000000000000000343232000
36、323432000323234用E、v,v0.5,不能反映剪胀用K、G,其取值基本没有限制,能反映剪胀77PPT课件4.4.弹性非线性模型弹性非线性模型线性弹性模型(广义虎克定律) D 210000002100000021000000100010001)21)(1 (vvvvvvED用E、v,v0.5?78PPT课件4.4.弹性非线性模型弹性非线性模型线性弹性模型(广义虎克定律) )1 (2000000)1 (2000000)1 (20000001000100011vvvvvvvvvEC C79PPT课件4.4.弹性非线性模型弹性非线性模型弹性模量 E 和泊松比 也可转换成剪切模量和体积模量。
37、 剪切模量 G 的意义为剪应力与相应剪应变之比,即G ;体积模量 B 的意义为球应力与体积应变之比,即vpB。它们与 E 和 的关系为, 12EG213 EB80PPT课件4.4.弹性非线性模型弹性非线性模型 假定土体为线弹性材料会有较大误差,因此提出非线性弹性模型。式中只含有两个参数:弹性模量E和泊松比,它随应力状态变化, 通过试验得出弹性参数随应力而变化的规律,从而建立相应公式。 )1 (2000000)1 (2000000)1 (20000001000100011vvvvvvvvvEC C81PPT课件4.4.弹性非线性模型弹性非线性模型弹性模量E和泊松比,体积变形模量K和剪切模量G它随
38、应力状态变化, 通过试验得出弹性参数随应力而变化的规律,从而建立相应公式。 210000002100000021000000100010001)21)(1 (vvvvvvED GGGGKGKGKGKGKGKGKGKGKD00000000000000000034323200032343200032323482PPT课件(三)应力应变关系矩阵2个独立参数83PPT课件(一)弹性参数的确定1、弹性模型E 由应力应变全量的广义虎克定律广义虎克定律,当2 =3 = 0时, ,因此, 。E1111E4.4.弹性非线性模型弹性非线性模型23111EzyzyzxzxyzyzyxzzzxyyzyxxGGGEEE
39、11111184PPT课件(一)弹性参数的确定1、弹性模型E 对于粘性土,做无侧限压缩试验,此时,2 =3=0 ,加竖向应力,测相应的应变 ,见图32(a)。点绘出轴向应力与轴向应变 的关系曲线,如图32(b)所示;曲线上的点A所对应的大主应力1 =,大主应变 = ,故弹性模量E11aa1aasE它是曲线在点A 处的割线的斜率,故称割线模量,以Es表示。4.4.弹性非线性模型弹性非线性模型23111E85PPT课件4.4.弹性非线性模型弹性非线性模型 b:割线模量a图32 c:泊松比86PPT课件 对于增量广义虎克定律,用Et和 t分别表示模量和泊松比,则 无侧限压缩试验时, , 自然有 。因
40、此, 曲线的切线斜率,就等于增量关系中的弹性模量,称切线模量, tttEddEdd3211032dd11ddEtaatddE4.4.弹性非线性模型弹性非线性模型zyzyyxzzzxzxzxyyyzyzzyxxGEGEGE11111187PPT课件2、泊松比写出广义虎克定律的另一个式子EE2133做无侧限压缩试验, E13,而11E故 1313 量测侧向膨胀应变 ,它就是 。点绘 关系曲线,见图32(c),则线上一点割线的斜率就等于全量的泊松比,叫割线泊松比,以 s表示, . 。自然,曲线的切线斜率具有切线泊松比的意义,以 t 表示 r3ar)(ars4.4.弹性非线性模型弹性非线性模型88PP
41、T课件artdd它用于反映增量的应力应变关系。图32 (c)4.4.弹性非线性模型弹性非线性模型复杂应力状态下E、v的定义?89PPT课件3、体积模量B 在三轴仪中对土样施加各向相等的压力3,也就是球应力p,逐步增大,测相应的体积应变 可点绘出 关系曲线,如图5-34 所示,其割线斜率为割线体积模量vpv图5-34vspB切线的斜率为切线体积模量vtddpB4.4.弹性非线性模型弹性非线性模型tBsBpv90PPT课件4、剪切模量G 在三轴仪试验中对土样逐级施加偏应力 测相应的轴向应变 ,可求得偏应变为31qv3vas八面体剪应力 :qoct32八面体剪应变:soct2 利用八面体面上的剪应力
42、剪应变间的关系可确定剪切模量4.4.弹性非线性模型弹性非线性模型soctoctqG391PPT课件soctoctqG3 点绘 关系曲线,可得割线剪切模量Gs 和切线剪切模量G t 如图35所示。 sq3图354.4.弹性非线性模型弹性非线性模型3qsGtGs92PPT课件( (二二) )、双曲线模型、双曲线模型( (邓肯邓肯- -张模型张模型) )一.切线弹性模量 康纳等人发现,在加荷时, 关系曲线可以用双曲线来拟合,如图5-36()所示。对于某一小主应力 来说,可以用下式表示31a3aaba31式中,和为试验常数。上式也可写成aaba314.4.弹性非线性模型弹性非线性模型93PPT课件 若
43、以 为纵坐标, 为横坐标,构成新的坐标系,则双曲线转换成直线,见图36(),其斜率为,截距为。31aaab图5-364.4.弹性非线性模型弹性非线性模型94PPT课件 邓肯和张利用上述关系推导出了弹性模量公式。在 不变条件下,由式 得增量的弹性模量aatE313111将式 代入上式得2atbaaE由式 得baa3114.4.弹性非线性模型弹性非线性模型aaba313atddE195PPT课件代入式 得23111baEt4.4.弹性非线性模型弹性非线性模型 现在来研究和的意义以及它们随应力的变化。由式 可见,当 时aaa96PPT课件4.弹性非线性模型a而 是曲线 的初始切线斜率,其意义为初始切
44、线模量,用Ei来表示,见图5-36()。因此这表示是初始切线模量的倒数。试验表明, 随3 变化。如果在双对数纸上点绘 和 的关系,则近似地为一直线,如图5-37所示。iEa197PPT课件4.弹性非线性模型图5-37这里 为大气压力。引入 是为了使纵横坐标化为无因次量。直线的截距为 ,斜率为 。于是有 , ,由此得 ,98PPT课件4.弹性非线性模型aa由式 还可见,当 时这里用 表示当 时 的值,也就是 的渐近值。实际上, 不可能趋向无穷大,在达到一定值后试样就破坏了,这时的偏应力为 ,它总是小于 a99PPT课件 叫破坏比。将式 和式 代入式 ,并利用上式,得4.弹性非线性模型ffRb31
45、23111baEt令 ffuRb31311100PPT课件4.弹性非线性模型fs3131叫应力水平。它表示当前应力圆直径与相同小主应力 条件下破坏应力圆直径之比,反映了强度发挥程度。式(5-43)也可写成令101PPT课件4.弹性非线性模型 破坏偏应力与固结压力有关,由下图中的几何关系不难推出 将上式和式(5-40)代入式(5-43),得 Et随应力水平增加而降低,随固随应力水平增加而降低,随固结压力增加而增加。结压力增加而增加。包含个参数,、包含个参数,、为强度指标为强度指标,另外三个数,另外三个数K、和、和Rf102PPT课件4.弹性非线性模型个参数确定:、为强度指标,另外三个数K、和 R
46、f的确定方法在推导中已作说明Rf对不同的3会有不同的值,取平均值 naaipKpE3103PPT课件二、切线泊松比 图5-35中所示为三轴试验测得的 关系曲线。利用式(5-21)可由体积应变推出侧向应变 。普通三轴仪竖向加荷,侧向为膨胀应变,故 为负值。点绘 关系曲线,如图5-41()所示。库哈威和邓肯也用双曲线来拟合,与式(5-34)相似,将有avrr)(rarraDf式中和为两个参数。将上式转换成rarDf4.4.弹性非线性模型弹性非线性模型104PPT课件ab图41 它表示,若以 为纵坐标, 为横坐标,则试验关系将为一直线,如图41()所示 arr4.4.弹性非线性模型弹性非线性模型10
47、5PPT课件由上式可得aarDf1 如果将图5-41(a)纵横坐标交换,就成为 曲线。其斜率为增量泊松比ar )( 将式(5-49)代入上式,并利用式(5-35a)把所含 用应力来代替可得a4.4.弹性非线性模型弹性非线性模型arart(5-49)baa311106PPT课件21Aftsin2cos2sin11331331cRpKpDAfnaa其中4.4.弹性非线性模型弹性非线性模型107PPT课件4.弹性非线性模型 由式(5-47),当(- )时, 。可见是 渐近值的倒数。当(- )时 式中,为初始切线泊松比,即各向等压状态下的泊松比。对于不同的,有不同的 值,在半对数纸上点绘 与 关系曲线
48、,近似为一直线,如图5-42所示。其截距为,斜率为。于是有初始切线泊松比为108PPT课件4.弹性非线性模型图5-42最后得切线泊松比公式为 109PPT课件4.弹性非线性模型上式算得的 有时可能大于.,在试验中测得的值也确有可能超过.,这是由于土体存在剪胀性。然而,有限元计算中,若大于或等于.,劲度矩阵就出现异常。因此,实际计算中,当.时,令. 参数G、F、D。110PPT课件三、切线体积模量 邓肯等人还提出了一种确定切线体积模量 的方法,并在有限元计算中使用 和 两参数。这习惯上被称做模型,而计算中使用 和 者被称作模型。对于E-B模型,二维问题的刚度矩阵可表示为tBtEtBtEt EEB
49、EBEBEBEBBD0003303393 在三轴试验中施加偏应力 ,则平均正应力的变化为 。因此313131p4.4.弹性非线性模型弹性非线性模型111PPT课件vtB3131 邓肯等人假定,与应力水平无关,或者说与偏应力 无关,它仅仅随固结压力而变。对于同一, 为常量。由上式可见,这相当于假定 与 成比例关系。根据这种假定,对同一,如果点绘 /3 关系曲线,应为一直线,如图5-43所示。31tBv3131v4.4.弹性非线性模型弹性非线性模型3131p112PPT课件7 . 07 . 0313svstB图5-434.4.弹性非线性模型弹性非线性模型邓肯等人取与应力水平.相应的点与原点连线的斜
50、率作为平均斜率,即113PPT课件4.弹性非线性模型 对于不同的, 也不同。在双对数纸上点绘 与 关系曲线,可得一直线,如图5-44所示,其截距为 ,斜率为,则114PPT课件四、回弹模量 对卸荷和再加荷的情况,试验表明应力应变关系曲线与加荷是不一样的,应该由回弹试验测定弹性模量。 图394.4.弹性非线性模型弹性非线性模型31aEurEt加荷卸荷再加荷115PPT课件 在图5-39中,为加荷状态的应力应变关系曲线,其斜率为t;而卸荷与再加荷的曲线之间略有差异,中间本应存在一个回滞环,这里近似假定它们一致,且为一直线,如AB所示,其斜率为 。它具有卸荷再加荷情况下弹性模量的物理意义,叫回弹模量