1、 第第6 6课时课时抛物线的简单性质的应用抛物线的简单性质的应用导 学 固 思. . . 1.根据抛物线的几何性质进行一些简单问题的应用,会利用几何性质求抛物线的标准方程、焦点坐标、准线方程、焦半径和通径.2.能判断抛物线与直线的位置关系,理解抛物线的焦点弦的特殊意义,结合定义得到焦点弦的公式,并利用该公式解决一些相关的问题.导 学 固 思. . . 我们已经学习了抛物线及抛物线的简单几何性质,抛物线的几何性质应用非常广泛,通过类比椭圆、双曲线的几何性质,结合抛物线的标准方程讨论研究抛物线的几何性质,再一次体会用曲线的方程研究曲线性质的方法,抛物线的范围、对称性、顶点、离心率等性质不难掌握,而
2、抛物线几何性质的应用是学习的难点,学习中应注重几何模型与数学问题的转换.导 学 固 思. . . 直线和抛物线的位置关系的判定方法联立直线和抛物线方程得:ax2+bx+c=0.当a0时,0 ; =0 ; 0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为().A.x=1B.x=-1C.x=2D.x=-2B导 学 固 思. . . B导 学 固 思. . . 导 学 固 思. . . 导 学 固 思. . . 有关的数学名言有关的数学名言 数学知识是最纯粹的逻辑思维活动,以及最高级智能活力美学体现。普林舍姆历史使人聪明,诗歌使人机智,数学使人精细。培根数学是最宝贵的研究精神之一。华罗庚没有哪门学科能比数学更为清晰地阐明自然界的和谐性。卡罗斯数学是规律和理论的裁判和主宰者。本杰明