1、1/62/63/64/65/66/6三模物理答案第一部分(选择题 共 42 分)每题 3 分,共 42 分。1 2 3 4 5 6 7 8 9 10 11 12 13 14C A B D B C D C A B C D B D第卷(非选择题 共 58 分)15(8 分)(1)水平位移 (2 分)(2)44.80(44.7044.90) (2 分)(3)根据题中所给条件可知:m1 OP = 45.0 44.80g cm = 2016g cmm OM m ON1 + 2 = 45.0 35.20g cm + 7.5 55.68g cm = 2001.6g cm在误差允许范围内,m1 OP = m1
2、 OM + m2 ON ,即两小球碰撞前后的动量守恒(4 分)16(10 分)(1)24.0;160 (2 分)(2)CAD (3 分)(3)AC (2 分)(4)利用这些数据能得出欧姆表的内阻 Rg。设多用电表欧姆挡内部电源电动势为 E,红黑表笔短接时电流为 Ig,根据闭合电路欧姆定律,有E = I R g gnE = I (R + R) g gN联立式可得nR = Rg -N n可见,利用这些数据能得出欧姆表的内阻 Rg。 (3 分)17(9 分)(1)电场强度定义式 =EFq(2 分)式中 q 是试探电荷的电荷量,F 是该试探电荷在电场中某个位置所受的电场力,E 是电场中这点的电场强度。
3、 (2 分)(2)磁感应强度定义式 B = FIL(2 分)式中 IL 是电流元(很短一段通电导线中的电流 I 与导线长度 L 的乘积),F 是电流元在磁场中某个位置(导线与磁场方向垂直)所受安培力的大小,B 是磁场中这点的磁感应强度的大小。 (2 分)116d - 4d 6d18 (9 分)(1) v= = 3T2T T U U(2) q = Bqv,v = d Bd(M + m)v(3) v = 12m19(10 分)(1)物块水平方向只受到一个恒力作用,将沿水平面做匀变速直线运动。设恒力为 F,物块的加速度为 a,在时间 t 内,物块的初速度为 v0,末速度为 vt,位移为 x。根据牛顿
4、第二定律 a = Fm根据匀变速直线运动的规律 2 2 2axt - v = v0则1 1F x = mv - mv (3 分)2 2t 202式中 F x 为恒力 F 做的功,121mv - mv 为物块动能的变化量(1 分)2 2t 20(2)小球在 O 点时,设弹簧的形变量为 x0,则此时弹簧的弹力 kx0 = mg在小球从 O 点运动到 O 点下方 x 处的过程中,弹簧的弹力 F 随 x 变化的情况如答图 3 所示。答图 3F-x 图线下的面积等于弹力做的功1W = + ( + )- kx k x x x弹 (2 分)0 02当小球运动到 O 点下方 x 处时,1弹簧的弹性势能 2E
5、= -W = kx x + kxp弹 弹 02小球的重力势能E = -mgx = -kx xp重 01 1所以,系统的势能 E = E + E = ( - kx x) + (kx x + kx2 ) = kx2 (4 分)p p p 0 0重 弹2 2 c20(12 分): (1)由题得: P = Nh (式中 N 为单位时间照射到玻璃片上的光子数)l经过时间 t,以入射的光子为研究对象,由动量定理得:2 hFt = Nt l设 F为光对玻璃板的作用力,由牛顿第三定律: F = F因为玻璃板静止,则有: F = mg联立解得: P=mgc(2)方法 1:在很短的时间 t 内,由动量守恒定律得:
6、nmv - nth = mv , v1 和 v2 分别是原子与激光作用前后的速度1 2cv v hn- = 即: m 1 2 nt c n hn得:a = mc方法 2:在很短的时间 t 内,对光子由动量定理得: hnFt = nt chn则F = n ,c 由牛顿第三定律得: F = FF n hn所以 m 的加速度为 a= =m mc设吸收一个光子跃迁后,原子的速度大小为 v,第一激发态和基态的能级差为 DE 。1 1由能量守恒定律得: mv 2 + hn = mv2 + DE02 2n由动量守恒定律得:mv - h = mv0cv h2 21 n两式联立得:DE = hn + 0 -(1 )c 2 mc23