1、 2016年全国各地中考数学试题分类解析汇编(第一辑)第18章 平行四边形一选择题(共20小题)1(2016益阳)下列判断错误的是()A两组对边分别相等的四边形是平行四边形B四个内角都相等的四边形是矩形C四条边都相等的四边形是菱形D两条对角线垂直且平分的四边形是正方形【分析】根据平行四边形的判定、矩形的判定,菱形的判定以及正方形的判定对各选项分析判断即可得解【解答】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,
2、故本选项正确故选D【点评】本题考查了正方形的判定,平行四边形、矩形和菱形的判定,熟练掌握各四边形的判定方法是解题的关键2(2016内江)下列命题中,真命题是()A对角线相等的四边形是矩形B对角线互相垂直的四边形是菱形C对角线互相平分的四边形是平行四边形D对角线互相垂直平分的四边形是正方形【分析】A、根据矩形的定义作出判断;B、根据菱形的性质作出判断;C、根据平行四边形的判定定理作出判断;D、根据正方形的判定定理作出判断【解答】解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D
3、、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选C【点评】本题综合考查了正方形、矩形、菱形及平行四边形的判定解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系3(2015广东)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A B2C +1 D2+1【分析】由正方形的性质和已知条件得出BC=CD=1,BCD=90,CE=CF=,得出CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长【解答】解:正方形ABCD的面积为1,BC=CD=1,BCD=90,E、F分别是BC、CD的中点,CE=BC=,CF=
4、CD=,CE=CF,CEF是等腰直角三角形,EF=CE=,正方形EFGH的周长=4EF=4=2;故选:B【点评】本题考查了正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解决问题的关键4(2016陕西)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M、N,则图中的全等三角形共有()A2对 B3对 C4对 D5对【分析】可以判断ABDBCD,MDOMBO,NODNOB,MONMON由此即可对称结论【解答】解:四边形ABCD是正方形,AB=CD=CB=AD,A=C=ABC=
5、ADC=90,ADBC,在ABD和BCD中,ABDBCD,ADBC,MDO=MBO,在MOD和MOB中,MDOMBO,同理可证NODNOB,MONMON,全等三角形一共有4对故选C【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型5(2016台湾)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上若ECD=35,AEF=15,则B的度数为何?()A50 B55 C70 D75【分析】由平角的定义求出CED的度数,由三角形内角和定理求出D的度数,再由平行四边形的对角相等即可得出结果【解答】解:四边形CEFG是正方
6、形,CEF=90,CED=180AEFCEF=1801590=75,D=180CEDECD=1807535=70,四边形ABCD为平行四边形,B=D=70(平行四边形对角相等)故选C【点评】本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出D的度数是解决问题的关键6(2016呼和浩特)如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上若BF=,则小正方形的周长为()A B C D【分析】先利用勾股定理求出DF,再根据BEFCFD,得=求出EF即可解决问题【解答】解:四边形AB
7、CD是正方形,面积为24,BC=CD=2,B=C=90,四边形EFGH是正方形,EFG=90,EFB+DFC=90,BEF+EFB=90,BEF=DFC,EBF=C=90,BEFCFD,=,BF=,CF=,DF=,=,EF=,正方形EFGH的周长为故选C【点评】本题考查正方形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题,属于中考常考题型7(2016郴州)如图,在正方形ABCD中,ABE和CDF为直角三角形,AEB=CFD=90,AE=CF=5,BE=DF=12,则EF的长是()A7 B8 C7D7【分析】由正方形的性质得出BAD=ABC=B
8、CD=ADC=90,AB=BC=CD=AD,由SSS证明ABECDF,得出ABE=CDF,证出ABE=DAG=CDF=BCH,由AAS证明ABEADG,得出AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,得出EG=GF=FH=EF=7,证出四边形EGFH是正方形,即可得出结果【解答】解:如图所示:四边形ABCD是正方形,BAD=ABC=BCD=ADC=90,AB=BC=CD=AD,BAE+DAG=90,在ABE和CDF中,ABECDF(SSS),ABE=CDF,AEB=CFD=90,ABE+BAE=90,ABE=DAG=CDF,同理:ABE=DAG=CD
9、F=BCH,DAG+ADG=CDF+ADG=90,即DGA=90,同理:CHB=90,在ABE和ADG中,ABEADG(AAS),AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,EG=GF=FH=EF=125=7,GEH=18090=90,四边形EGFH是正方形,EF=EG=7;故选:C【点评】本题考查了正方形的判定与性质、全等三角形的判定与性质;熟练掌握正方形的判定与性质,证明三角形全等是解决问题的关键8(2016贵州)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH若BE:EC=2:1,则线段CH的长是()A3
10、B4 C5 D6【分析】根据折叠的性质可得DH=EH,在直角CEH中,若设CH=x,则DH=EH=9x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长【解答】解:由题意设CH=xcm,则DH=EH=(9x)cm,BE:EC=2:1,CE=BC=3cm在RtECH中,EH2=EC2+CH2,即(9x)2=32+x2,解得:x=4,即CH=4cm故选(B)【点评】本题主要考查正方形的性质以及翻折变换,折叠问题其实质是轴对称性质:对应线段相等,对应角相等找到相应的直角三角形,利用勾股定理求解是解决本题的关键9(2016攀枝花)下列关于矩形的说法中正确的是()A对角线相等的四边形是矩形B矩形
11、的对角线相等且互相平分C对角线互相平分的四边形是矩形D矩形的对角线互相垂直且平分【分析】根据矩形的性质和判定定理逐个判断即可【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B【点评】本题考查了矩形的性质和判定的应用,能熟记矩形的性质和判定定理是解此题的关键10(2016广安)下列说法:三角形的三条高一定都在三角形内有一个角是直角的四边形是矩形有一组邻边相等的平行四边形是菱形两边及一角对应相等的两个三角形全等
12、一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A1个 B2个 C3个 D4个【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题【解答】解:错误,理由:钝角三角形有两条高在三角形外错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形正确,有一组邻边相等的平行四边形是菱形错误,理由两边及一角对应相等的两个三角形不一定全等错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形正确的只有,故选A【点评】本题考查三角形高,菱形、矩形、平行四边形的判定等知识,解题
13、的关键是灵活应用这些知识解决问题,属于中考常考题型来源:163文库11(2016苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当CDE的周长最小时,点E的坐标为()A(3,1) B(3,) C(3,) D(3,2)【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE的周长最小D(,0),A(3,0),H(,0),直线CH解析式为y=x+4,x=3时,y=
14、,点E坐标(3,)故选:B【点评】本题考查矩形的性质、坐标与图形的性质、轴对称最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型12(2016雅安)如图,在矩形ABCD中,AD=6,AEBD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A2B C2D3【分析】在RtABE中,利用三角形相似可求得AE、DE的长,设A点关于BD的对称点A,连接AD,可证明ADA为等边三角形,当PQAD时,则PQ最小,所以当AQAD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案.【解答】解:设BE=x
15、,则DE=3x,四边形ABCD为矩形,且AEBD,ABEDAE,AE2=BEDE,即AE2=3x2,AE=x,在RtADE中,由勾股定理可得AD2=AE2+DE2,即62=(x)2+(3x)2,解得x=,AE=3,DE=3,如图,设A点关于BD的对称点为A,连接AD,PA,则AA=2AE=6=AD,AD=AD=6,AAD是等边三角形,PA=PA,当A、P、Q三点在一条线上时,AP+PQ最小,又垂线段最短可知当PQAD时,AP+PQ最小,AP+PQ=AP+PQ=AQ=DE=3,故选D【点评】本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的
16、关键,利用条件证明ADA是等边三角形,借助几何图形的性质可以减少复杂的计算13(2016绥化)如图,矩形ABCD的对角线AC、BD相交于点O,CEBD,DEAC,若AC=4,则四边形OCED的周长为()A4 B8 C10 D12【分析】由四边形ABCD为矩形,得到对角线互相平分且相等,得到OD=OC,再利用两对边平行的四边形为平行四边形得到四边形DECO为平行四边形,利用邻边相等的平行四边形为菱形得到四边形DECO为菱形,根据AC的长求出OC的长,即可确定出其周长来源:163文库【解答】解:四边形ABCD为矩形,OA=OC,OB=OD,且AC=BD,OA=OB=OC=OD=2,CEBD,DEA
17、C,四边形DECO为平行四边形,OD=OC,四边形DECO为菱形,OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B【点评】此题考查了矩形的性质,以及菱形的判定与性质,熟练掌握判定与性质是解本题的关键14(2016威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A B C D【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到BFC=90,根据勾股定理求出答案【解答】解:连接BF,BC=6,点E为BC的中点,BE=3,又AB=4,AE=5,BH=,
18、则BF=,FE=BE=EC,BFC=90,CF=故选:D【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键15(2016舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A B C1 D【分析】过F作FHAE于H,根据矩形的性质得到AB=CD,ABCD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到,于是得到AE=AF,列方程即可得到结论【解答】解:过F作FHA
19、E于H,四边形ABCD是矩形,AB=CD,ABCD,AECF,四边形AECF是平行四边形,AF=CE,来源:Z&xx&k.ComDE=BF,AF=3DE,AE=,FHA=D=DAF=90,AFH+HAF=DAE+FAH=90,DAE=AFH,ADEAFH,AE=AF,=3DE,DE=,故选D【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,平行四边形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键16(2016宜宾)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A4.8 B5 C6 D7
20、.2【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,AOD的面积,然后由SAOD=SAOP+SDOP=OAPE+ODPF求得答案【解答】解:连接OP,矩形的两条边AB、BC的长分别为6和8,S矩形ABCD=ABBC=48,OA=OC,OB=OD,AC=BD=10,OA=OD=5,SACD=S矩形ABCD=24,SAOD=SACD=12,SAOD=SAOP+SDOP=OAPE+ODPF=5PE+5PF=(PE+PF)=12,解得:PE+PF=4.8故选:A【点评】此题考查了矩形的性质以及三角形面积问题此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运
21、用是解题的关键17(2016资阳)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EGBC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,H=120,则DN的长为()A B CD2【分析】延长EG交DC于P点,连接GC、FH,则GCP为直角三角形,证明四边形OGCM为菱形,则可证OC=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案【解答】解:长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=CD=,GCP为直角三角形,四边形EFGH是菱形,EHG=120,GH=EF=2,OHG=60,EGFH,OG=GHs
22、in60=2=,由折叠的性质得:CG=OG=,OM=CM,MOG=MCG,PG=,OGCM,MOG+OMC=180,MCG+OMC=180,OMCG,四边形OGCM为平行四边形,OM=CM,四边形OGCM为菱形,CM=OG=,根据题意得:PG是梯形MCDN的中位线,DN+CM=2PG=,DN=;故选:C【点评】本题考查了矩形的性质、菱形的性质、翻折变换的性质、勾股定理、梯形中位线定理、三角函数等知识;熟练掌握菱形和矩形的性质,由梯形中位线定理得出结果是解决问题的关键18(2016台湾)如图,以矩形ABCD的A为圆心,AD长为半径画弧,交AB于F点;再以C为圆心,CD长为半径画弧,交AB于E点若
23、AD=5,CD=,则EF的长度为何?()A2 B3 C D【分析】连接CE,可得出CE=CD,由矩形的性质得到BC=AD,在直角三角形BCE中,利用勾股定理求出BE的长,由ABAF求出BF的长,由BEBF求出EF的长即可【解答】解:连接CE,则CE=CD=,BC=AD=5,BCE为直角三角形,BE=,又BF=ABAF=5=,EF=BEBF=2故选A【点评】此题考查了矩形的性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键19(2016兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CEBD,DEAC,AD=2,DE=2,则四边形OCED的面积()A2B4 C4D8【分析】连接OE,与D
24、C交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到ODEC为平行四边形,根据邻边相等的平行四边形为菱形得到四边形ODEC为菱形,得到对角线互相平分且垂直,求出菱形OCEF的面积即可【解答】解:连接OE,与DC交于点F,四边形ABCD为矩形,OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,ODCE,OCDE,四边形ODEC为平行四边形,OD=OC,四边形ODEC为菱形,DF=CF,OF=EF,DCOE,DEOA,且DE=OA,四边形ADEO为平行四边形,AD=2,DE=2,OE=2,即OF=EF=,在RtD
25、EF中,根据勾股定理得:DF=1,即DC=2,则S菱形ODEC=OEDC=22=2故选A【点评】此题考查了矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键20(2016贵州)下列语句正确的是()A对角线互相垂直的四边形是菱形B有两边及一角对应相等的两个三角形全等C矩形的对角线相等D平行四边形是轴对称图形【分析】由菱形的判定方法得出选项A错误;由全等三角形的判定方法得出选项B错误;由矩形的性质得出选项C正确;由平行四边形的性质得出选项D错误;即可得出结论【解答】解:对角线互相垂直的四边形不一定是菱形,选项A错误;来源:163文库有两边及一角对应相等的两个三角形不一定全等,选项B错误;矩形的对角线相等,选项C正确;平行四边形是中心对称图形,不一定是轴对称图形,选项D错误;故选:C【点评】本题考查了矩形的性质、全等三角形的判定方法、菱形的判定方法、平行四边形的性质;熟练掌握矩形的性质、全等三角形的判定方法、菱形的判定是解决问题的关键18