1、2022-6-51 2010年数学建模暑假培训讲座年数学建模暑假培训讲座2022-6-52 浅谈数学建模一、对数学建模竞赛的认识二、 数学建模实践活动三、 对大学生科技能力的培养2022-6-53一、对数学建模竞赛的认识一、对数学建模竞赛的认识1 1、作题与一般的培训、作题与一般的培训 作题 利用已有知识可以解决,与知识及知识量有关,其过程有利于掌握知识。作题有一个可以作的潜在假设。 培训 增加知识,以知识为基础解题,基本是老师主导。2 2、作事与实践、作事与实践 作事 对象是问题,以自身知识和能力为基础,其过程是锻炼和发挥 综合素质。 实践 作事的过程可称为实践。对问题,只能说依其能力和知识
2、可以给予一定程度的解决,不保证已有知识够用。3 3、数模竞赛与实践、数模竞赛与实践 数模竞赛是一个实践过程,不是解题过程。2022-6-54二、数学建模实践活动二、数学建模实践活动1 1、投入与效益、投入与效益 投入投入 以老师和同学都要投入大量的时间和精力为前提。以老师和同学都要投入大量的时间和精力为前提。 效益效益 投入的效益不单纯体现在知识的程度上,主要体现在使学生有作投入的效益不单纯体现在知识的程度上,主要体现在使学生有作科研的经历,使教师有机会提高学术水平,真正做到教学相长。科研的经历,使教师有机会提高学术水平,真正做到教学相长。2 2、选择实践活动内容的原则、选择实践活动内容的原则
3、 学术的先进性学术的先进性 文献要新文献要新 大学生的可接受性大学生的可接受性 思想性强,所用研究技术相对初等思想性强,所用研究技术相对初等 有较大的提问题空间有较大的提问题空间 开放性选题,不是小品类选题开放性选题,不是小品类选题 2022-6-55二、数学建模实践活动3 3、选题过程中常遇到的困境和解决思路、选题过程中常遇到的困境和解决思路 学术先进性与学生的知识及技术水平的可承受性.以学生的已有知识和应具有的能力为基础。 教师所从事专业与所选课题内容的一致性,若一致更好,若不一致,以学生的可接受性为基础,把相应研究首先看成教学成果其次为科研成果,接受成果所属分类分散的事实。 学生所学专业
4、与所选内容的一致性 不以专业知识作为选题依据,不引导其作专业研究,而是提供一个作科学研究的机会。 教师的知识面宽度与选题内容的丰富度的关系 显然,知识面宽时丰富度就宽,这是以教师掌握为前提的,其次,很多时候教师要以阅历为前提判断一个选题的水平及可接受性,然后和同学一起学习课题内容,做到教学相长。 2022-6-56二、数学建模实践活动 目标: 1、数学建模培养的是意识与理念; 2、数学建模活动不仅仅是一个简单的培训、竞赛活动。-可以看做是知识积累的过程。 (1)大学生创新计划、暑期班; (2)发表学术论文; (3)参加其他的竞赛活动; (4)敢想敢做的态度。2022-6-57 数据处理与数据建
5、模方法数据处理与数据建模方法2022-6-58 2121世纪的社会是信息社会,其影响最终将世纪的社会是信息社会,其影响最终将要比十九世纪由农业社会转向工业社会更要比十九世纪由农业社会转向工业社会更加深刻。加深刻。 “一个国家总的信息流的平均增长与工业一个国家总的信息流的平均增长与工业潜力的平方成正比潜力的平方成正比”。 信息资源信息资源与与自然资源自然资源和和物质资源物质资源被称为人被称为人类生存与发展的类生存与发展的三大资源三大资源。 数据处理与数据建模方法数据处理与数据建模方法2022-6-59 实际中大量信息或海量信息对应着大实际中大量信息或海量信息对应着大量的数据或海量数据,从这些数据
6、中寻求量的数据或海量数据,从这些数据中寻求所需要的问题答案所需要的问题答案-数据建模问题数据建模问题。 通过实际对象过去或当前的相关信通过实际对象过去或当前的相关信息,研究息,研究两个方面问题:两个方面问题: (1 1)分析研究实际对象所处的状态)分析研究实际对象所处的状态和特征,依此做出评价和决策;和特征,依此做出评价和决策; (2 2)分析预测实际对象未来的变化)分析预测实际对象未来的变化状况和趋势,为科学决策提供依据。状况和趋势,为科学决策提供依据。 数据处理与数据建模方法数据处理与数据建模方法2022-6-510 数据处理与数据建模方法数据处理与数据建模方法 1. 数据建模的一般问题数
7、据建模的一般问题 2. 数据处理的一般方法数据处理的一般方法 3. 数据建模的综合评价方法数据建模的综合评价方法 4. 数据建模的动态加权方法数据建模的动态加权方法 . 数据建模的综合排序方法数据建模的综合排序方法 . 数据建模的预测方法数据建模的预测方法 2022-6-511实际对象都客观存在着一些反映其特征的相实际对象都客观存在着一些反映其特征的相关数据信息;关数据信息;如何综合利用这些数据信息对实际对象的现如何综合利用这些数据信息对实际对象的现状做出综合评价,或预测未来的发展趋势,状做出综合评价,或预测未来的发展趋势,制定科学的决策方案?制定科学的决策方案?-数据建模的数据建模的综合评价
8、、综合排序、预测与综合评价、综合排序、预测与决策等问题决策等问题。 数据建模一般问题的提出:数据建模一般问题的提出: 一、数据建模的一般问题一、数据建模的一般问题一般一般2022-6-512 综合评价是综合评价是科学、合理决策的前提科学、合理决策的前提。 综合评价的基础是综合评价的基础是信息的综合利用信息的综合利用。 综合评价的过程是综合评价的过程是数据建模的过程数据建模的过程。 数据建模的基础是数据建模的基础是数据的标准化处理数据的标准化处理。 一、数据建模的一般问题一、数据建模的一般问题如何构成一个综合评价问题呢?如何构成一个综合评价问题呢?2022-6-513 依据相关信息对实际对象所进
9、行的客观、依据相关信息对实际对象所进行的客观、公正、合理的全面评价。公正、合理的全面评价。 如果把被评价对象视为系统,则问题:如果把被评价对象视为系统,则问题: 在若干个在若干个(同类同类)系统中,如何确定哪个系系统中,如何确定哪个系统的运行统的运行(或发展或发展)状况好,哪个状况差?即状况好,哪个状况差?即哪个优,哪个劣?哪个优,哪个劣? 一类多属性一类多属性(指标指标)的的综合评价问题综合评价问题。综合评价:综合评价: 一、数据建模的一般问题一、数据建模的一般问题2022-6-514综合评价问题的五个要素综合评价问题的五个要素 (1)被评价对象)被评价对象:被评价者,统称为评价系统。被评价
10、者,统称为评价系统。 (2)评价指标:)评价指标:反映被评价对象的基本要素,反映被评价对象的基本要素,一起构成评价指标体系。一起构成评价指标体系。原则原则:系统性、科学性、系统性、科学性、可比性、可测性和独立性。可比性、可测性和独立性。(3)权重系数:)权重系数:反映各指标之间影响程度大小反映各指标之间影响程度大小的度量。的度量。 (4)综合评价模型:)综合评价模型:将评价指标与权重系数综将评价指标与权重系数综合成一个整体指标的模型。合成一个整体指标的模型。 (5)评价者:)评价者:直接参与评价的人。直接参与评价的人。2022-6-515综合评价过程的流程综合评价过程的流程 确定指标 初始值
11、计算综合 评价指标 对nsss,21进行综合评价 排序或分类 ? 明 任 确 务 明 目 确 的 确定评价指标 规范化指标mxxx,21 指 预 标 处 的 理 权 重 系 数mwww,21 确 系 定 数 权 综合评价指标),( wxfy 选 价 择 模 评 型 依指标nyyy,21对nsss,21排序或分类 2022-6-516 二、数据处理的一般方法二、数据处理的一般方法 1. 数据类型的一致化处理方法数据类型的一致化处理方法 极大型极大型: :期望取值越大越好;期望取值越大越好; 极小型极小型: :期望取值越小越好;期望取值越小越好; 中间型中间型: :期望取值为适当的中间值最好期望取
12、值为适当的中间值最好; ; 区间型区间型: :期望取值落在某一个确定的区间期望取值落在某一个确定的区间 内为最好。内为最好。 什么是一什么是一致化处理致化处理?为什么要为什么要一致化一致化?2022-6-517 二、数据处理的一般方法二、数据处理的一般方法 1. 数据类型的一致化处理方法数据类型的一致化处理方法 2022-6-518 二、数据处理的一般方法二、数据处理的一般方法 1. 数据类型的一致化处理方法数据类型的一致化处理方法 2022-6-519 2. 数据指标的无量纲化处理方法数据指标的无量纲化处理方法 (3)功效系数法:功效系数法: 二、数据处理的一般方法二、数据处理的一般方法(1
13、)标准差法:标准差法:ijjijjxxxs (2)极值差法:极值差法:ijjijjjxmxMm ijjijjjxmxcdMm (1,2, , ;1,2, , )in jm0,1ijx 1122111() njijinjijjixxnsxxn11maxminjijinjijinMxmx 2022-6-520 二、数据处理的一般方法二、数据处理的一般方法 3. 模糊模糊指标的量化处理方法指标的量化处理方法 在实际中,很多问题都涉及到定性,或在实际中,很多问题都涉及到定性,或模糊指标的定量处理问题。模糊指标的定量处理问题。 诸如诸如: :教学质量、科研水平、工作政绩教学质量、科研水平、工作政绩、人员
14、素质、各种满意度、信誉、态度、意、人员素质、各种满意度、信誉、态度、意识、观念、能力等因素有关的政治、社会、识、观念、能力等因素有关的政治、社会、人文等领域的问题。人文等领域的问题。 如何对有关问题给出定量分析呢?如何对有关问题给出定量分析呢?2022-6-521按国家的评价标准按国家的评价标准, ,评价因素一般分为五评价因素一般分为五个等级,如个等级,如A A,B B,C C,D D,E E。 如何将其量化?若如何将其量化?若A A- -,B B+ +,C C- -,D D+ +等又如等又如何合理量化?何合理量化? 根据实际问题,构造模糊隶属函数的量根据实际问题,构造模糊隶属函数的量化方法是
15、一种可行有效的方法。化方法是一种可行有效的方法。 二、数据处理的一般方法二、数据处理的一般方法 3. 定性定性指标的量化处理方法指标的量化处理方法 2022-6-522假设有多个评价人对某项因素评价为假设有多个评价人对某项因素评价为A A,B B,C C,D,ED,E共共5 5个等级个等级: v1 ,v2 ,v3 ,v4,v5。 譬如:评价人对某事件譬如:评价人对某事件“满意度满意度”的评价可分为的评价可分为 很满意,满意,较满意,不太满意,很不满意很满意,满意,较满意,不太满意,很不满意 将其将其5 5个等级依次对应为个等级依次对应为5 5,4 4,3 3,2 2,1 1。 这里为连续量化,
16、取偏大型柯西分布和对数函这里为连续量化,取偏大型柯西分布和对数函数作为隶属函数:数作为隶属函数: 二、数据处理的一般方法二、数据处理的一般方法2022-6-523 二、数据处理的一般方法二、数据处理的一般方法 3. 定性定性指标的量化处理方法指标的量化处理方法 2022-6-524 二、数据处理的一般方法二、数据处理的一般方法 3. 定性定性指标的量化处理方法指标的量化处理方法 根据这个规律,根据这个规律,对于任何一个评价值,对于任何一个评价值,都可给出一个合适的都可给出一个合适的量化值。量化值。 据实际情况可构据实际情况可构造其他的隶属函数。造其他的隶属函数。如取如取偏大型正态分布偏大型正态
17、分布。2022-6-525 模糊定性指标量化的应用案例模糊定性指标量化的应用案例(1 1)CUMCM2003-A,C:SARSCUMCM2003-A,C:SARS的传播问题的传播问题(2 2)CUMCM2004-D:CUMCM2004-D:公务员招聘问题;公务员招聘问题;(3 3)CUMCM2005-B:DVDCUMCM2005-B:DVD租赁问题;租赁问题;(4 4)CUMCM2008-B:CUMCM2008-B:高教学费标准探讨问题;高教学费标准探讨问题;(5 5)CUMCM2008-D:NBACUMCM2008-D:NBA赛程的分析与评价问题;赛程的分析与评价问题;(6 6)CUMCM2
18、009-D:CUMCM2009-D:会议筹备问题。会议筹备问题。2022-6-526 三、数据建模的综合评价方法三、数据建模的综合评价方法 适用条件适用条件: :各评价指标之间相互独立。各评价指标之间相互独立。 对不完全独立的情况,其结果将导致各指标间对不完全独立的情况,其结果将导致各指标间信息的重复,使评价结果不能客观地反映实际。信息的重复,使评价结果不能客观地反映实际。 1. 线性加权综合法线性加权综合法 主要特点:主要特点: (1 1)各评价指标间作用得到线性补偿;)各评价指标间作用得到线性补偿; (2 2)权重系数的对评价结果的影响明显。)权重系数的对评价结果的影响明显。2022-6-
19、527 2. 非非线性加权综合法线性加权综合法 三、数据建模的综合评价方法三、数据建模的综合评价方法主要特点:主要特点:(1 1)突出了各指标值的一致性,即平衡评价指标值)突出了各指标值的一致性,即平衡评价指标值较小的指标影响的作用;较小的指标影响的作用;(2 2)权重系数大小的影响不是特别明显,而对指标)权重系数大小的影响不是特别明显,而对指标值的大小差异相对较敏感。值的大小差异相对较敏感。2022-6-528 三、数据建模的综合评价方法三、数据建模的综合评价方法 3. 逼近理想点(逼近理想点(TOPSISTOPSIS)方法方法 2022-6-529 三、数据建模的综合评价方法三、数据建模的
20、综合评价方法 3. 逼近理想点(逼近理想点(TOPSISTOPSIS)方法方法 2022-6-530返回 三、数据建模的综合评价方法三、数据建模的综合评价方法 3. 逼近理想点(逼近理想点(TOPSISTOPSIS)方法方法 2022-6-531 综合评价方法的应用案例综合评价方法的应用案例(1 1)CUMCM1993-B:CUMCM1993-B:足球队排名问题;足球队排名问题;(2 2)CUMCM2001-B:CUMCM2001-B:公交车调度问题;公交车调度问题;(3 3)CUMCM2002-B:CUMCM2002-B:彩票中的数学问题;彩票中的数学问题;(4 4)CUMCM2004-D:
21、CUMCM2004-D:公务员招聘问题;公务员招聘问题;(5 5)CUMCM2005-A:CUMCM2005-A:长江水质的评价和预测问题;长江水质的评价和预测问题;(6 6)CUMCM2005-C:CUMCM2005-C:雨量预报方法评价问题;雨量预报方法评价问题;(7 7)CUMCM2006-B:CUMCM2006-B:艾滋病疗法评价与预测问题;艾滋病疗法评价与预测问题;(8 8)CUMCM2007-C:CUMCM2007-C:手机手机“套餐套餐”优惠几何问题;优惠几何问题;(9 9)CUMCM2008-B:CUMCM2008-B:高教学费标准探讨问题;高教学费标准探讨问题;(1010)C
22、UMCM2008-D:NBACUMCM2008-D:NBA赛程的分析与评价问题;赛程的分析与评价问题;(1111)CUMCM2009-D:CUMCM2009-D:会议筹备问题。会议筹备问题。2022-6-532 四、数据建模的动态加权综合方法四、数据建模的动态加权综合方法 1. 动态加权问题的一般提法动态加权问题的一般提法 问题问题: :如何对如何对n个系统做出综合评价呢个系统做出综合评价呢? ?2022-6-533 四、数据建模的动态加权方法四、数据建模的动态加权方法 注意注意: 问题对于每一个属性而言,既有问题对于每一个属性而言,既有不同类别不同类别的差异,同类别的又有的差异,同类别的又有
23、不同量值不同量值的差异。的差异。 对于既有对于既有“质差质差”,又有,又有“量差量差”的的问题,合理有效的方法是问题,合理有效的方法是动态加权综合评动态加权综合评价方法价方法。 1. 动态加权问题的一般提法动态加权问题的一般提法 2022-6-534 四、数据建模的动态加权方法四、数据建模的动态加权方法2. 动态加权函数的设定动态加权函数的设定 2022-6-535 四、数据建模的动态加权方法四、数据建模的动态加权方法2. 动态加权函数的设定动态加权函数的设定 2022-6-536返回 四、数据建模的动态加权方法四、数据建模的动态加权方法2. 动态加权函数的设定动态加权函数的设定 2022-6
24、-537 四、数据建模的动态加权方法四、数据建模的动态加权方法3. 动态加权的综合评价模型动态加权的综合评价模型 2022-6-538 五、数据建模的综合排序方法五、数据建模的综合排序方法 1. 综合排序问题的一般提法综合排序问题的一般提法 问题问题: :如何给出如何给出n个系统的最终排序结果呢个系统的最终排序结果呢? ?2022-6-539 五、数据建模的综合排序方法五、数据建模的综合排序方法 2. 综合排序问题的方法综合排序问题的方法 2022-6-540 动态加权与综合排序的应用案例动态加权与综合排序的应用案例动态加权的综合排序案例:动态加权的综合排序案例:(1 1)CUMCM2002-
25、B:CUMCM2002-B:彩票中的数学问题;彩票中的数学问题;(2 2)CUMCM2005-A:CUMCM2005-A:长江水质的评价和预测问题;长江水质的评价和预测问题;综合评价的排序案例:综合评价的排序案例:(1 1)CUMCM1993-B:CUMCM1993-B:足球队排名问题;足球队排名问题;(2 2)CUMCM2008-D:NBACUMCM2008-D:NBA赛程的分析与评价问题;赛程的分析与评价问题;(3 3)CUMCM2009-D:CUMCM2009-D:会议筹备问题。会议筹备问题。2022-6-541 六、数据建模的常用预测方法六、数据建模的常用预测方法1.1.插值与拟合方法
26、:小样本内部预测;插值与拟合方法:小样本内部预测;应用案例:应用案例:(1 1)CUMCM2001-A:血管的三维重建问题;血管的三维重建问题;(2)CUMCM2003-A,C:SARS的传播问题;的传播问题;(3)CUMCM2004-C:饮酒驾车问题;饮酒驾车问题;(4) CUMCM2005-A:长江水质的评价与预测;长江水质的评价与预测;(5) CUMCM2005-D:雨量预报方法的评价;雨量预报方法的评价;(6) CUMCM2006-B:艾滋病疗法的评价与预测。艾滋病疗法的评价与预测。2022-6-542 六、数据建模的常用预测方法六、数据建模的常用预测方法2.2.回归模型方法:大样本的
27、内部预测;回归模型方法:大样本的内部预测;应用案例:应用案例:(1)CUMCM2004-A:奥运临时超市网点设计;奥运临时超市网点设计;(2)CUMCM2004-B:电力市场的输电阻塞管理;电力市场的输电阻塞管理;(3)CUMCM2005-A:长江水质的评价与预测;长江水质的评价与预测;(4)CUMCM2006-B:艾滋病疗法的评价与预测;艾滋病疗法的评价与预测;(5)CUMCM2008-B:高教学费标准探讨问题。高教学费标准探讨问题。2022-6-543 六、数据建模的常用预测方法六、数据建模的常用预测方法3.3.灰预测灰预测GM(1,1)GM(1,1):小样本的未来预测;:小样本的未来预测
28、;(1)CUMCM2003-A:SARS的传播问题;的传播问题;(2)CUMCM2005-A:长江水质的评价与预测;长江水质的评价与预测;(3)CUMCM2006-B:艾滋病疗法的评价与预测;艾滋病疗法的评价与预测;(4)CUMCM2008-B:高教学费标准探讨问题。高教学费标准探讨问题。4.4.时间序列方法:大样本的随机因素或周期特征的时间序列方法:大样本的随机因素或周期特征的未来预测;未来预测;(1)CUMCM2003-A:SARS的传播问题;的传播问题;(2)CUMCM2005-A:长江水质的评价与预测;长江水质的评价与预测;(3)CUMCM2006-B:艾滋病疗法的评价与预测。艾滋病疗法的评价与预测。5.5.神经网络方法:大样的未来预测神经网络方法:大样的未来预测2022-6-544谢谢大家谢谢大家