1、第八章第八章 局部腐蚀局部腐蚀 1. 概述概述定义 局部腐蚀是指金属表面局部区域的腐蚀破坏比其余表面大得多,从而形成坑洼、沟槽、分层、穿孔、破裂等破坏形态。 主要类型 电偶腐蚀 晶间腐蚀 选择性腐蚀 缝隙腐蚀 小孔腐蚀 应力腐蚀 磨损腐蚀 氢损伤 危害性举例:局部腐蚀破坏有如下特征 :(1) 复杂性 (2) 集中性 (3) 突发性 发生局部腐蚀的条件(1) 金属方面或溶液方面存在较大的电化学不均一性,因而形成了可以明确区分的阳极区和阴极区,它们遵循不同的电化学反应规律。((2) 阳极区和阴极区的电化学条件差异在腐蚀过程中一直保持下去,不会减弱,甚至还会不断强化,使某些局部区域的阳极溶解速度一直
2、保持高于其余表面。这是局部腐蚀能够持续进行(发展)的条件。 2. 电偶腐蚀电偶腐蚀 发生电偶腐蚀的几种情况(1) 异金属(包括导电的非金属材料,如石墨)部件的组合。 (2) 金属镀层。 (3) 金属表面的导电性非金属膜。 (4) 气流或液流带来的异金属沉积,也会导致电偶腐蚀问题。 电偶腐蚀的影响因素 (1)腐蚀电位差 表示电偶腐蚀的倾向。两种金属在使用环境中的腐蚀电位相差愈大,组成电偶对时阳极金属受到加速腐蚀破坏的可能性愈大。将各种金属材料在某种环境中的腐蚀电位测量出来,并把它们从低到高排列,便得到所谓电偶序(galvanic series) 。一些工业金属和合金在海水中的电偶序铂金石墨钛银C
3、hlorimet 3(62Ni,18Cr ,18Mo)Hastelloy C (62Ni,17Cr ,15Mo)18-8Mo不锈钢(钝态)18-8不锈钢(钝态)1130%Cr不锈钢(钝态)Inconel(80Ni,13Cr ,7Fe)(钝态)镍(钝态)银焊药Monel(70Ni,32Cu)铜镍合金(6090Cu,4011Ni)青铜铜黄铜阴极性阳极性Chlorimet2(66Ni,32Mo,1Fe)Hastelloy B (60Ni,30Mo,6Fe,1Mn)Inconel(活态)镍(活态)锡铅铅-锡焊药18-8钼不锈钢(活态)18-8不锈钢(活态)高镍铸铁13%Cr不锈钢铸铁钢或铁2024铝(
4、4.5Cu,1.5Mg,0.6Mu)镉工业纯铝(1100)锌镁和镁合金注意: 比较腐蚀电位从而确定电偶对中哪个金属是阳极时绝不能离开环境条件。同一种电偶组合在不同环境条件中不仅腐蚀电位差的数值不一样,甚至可能发生极性反转。 不仅环境条件不同,异金属组合的电位关系不同,即使在同一环境中,随着腐蚀过程的进行,两种金属的腐蚀电位相对关系也会改变。 (2) 极化性能 一般说来,在阴极性金属M1上去极化剂还原反应愈容易进行,即阴极反应极化性能愈弱,阳极性金属M2的电偶腐蚀效应愈大,造成的破坏愈严重。 析氢腐蚀 在发生析氢腐蚀的环境,与低氢过电位的阴极性金属接触,将造成阳极性金属发生严重的电偶腐蚀。 Lg
5、|i| E E(ioc)ioclgig lgiglgig lgigLg|i|(a)活化极化控制腐蚀体系 (b)受阴极反应浓度极化控制的腐蚀体系lg(ig/ig)=bc/(ba+bc)lg(ioc)/ioc (b)ig=id ig=id阴极反应极化性能对电偶腐蚀电流密度的影响 ( 阴,阳极面积相等) 吸氧腐蚀 如果阴极反应受氧扩散控制,阴极反应速度等于氧分子极限扩散电流密度,ic= id。那么各种金属上阴极反应的极化性能是一样的,此时ig(M2)与阴极性金属的种类无关,仅取决于id的大小,id增大,则ig(M2)增大 ,阳极性金属M2的电偶腐蚀破坏加剧。 (3)阴、阳极表面面积比S1/S2 随着
6、阴极性金属M1面积增大,阳极性金属M2的电偶电流密度ig都增大,电偶腐蚀破坏加重。 所以,大阴极小阳极的电偶组合是很有害的,应当避免。(4)溶液导电性 溶液导电性对电偶电流的分布有很大的影响。 EgEgEgEgLg|i|Lg|i|LgigLgig阴极 面积 Sl 阴极 面积 Sl E E 阴极面积由Sl改变到Sl 阳极的电偶电流密度的变化 lg = lg=阴极面积Sl对电偶腐蚀电流密度的影响 (活化极化控制腐蚀体系) bcba+bcig igSl Sl3210-2-1012101001000lg iAg(UA/cm2)Al 2024/3.5%Nacl阴极属性 Cu 4130钢 304不锈钢 T
7、i-6Al-4VaiAgV-(mdd)lg(Sc/Sa) 或 lg(1+Sc/Sa)Al2024的电偶电流密度iAg和溶解速度V-a与面积比Sc/Sa的关系根据Mansfeld等,引自70%铬含量(%)晶界上的(Fe.Cr)23C618%不锈钢晶界上铬的析出和贫铬区的形成 12%282420 1612 8 4 0500100015002000钢样平均含铬量铬含量(%) 距碳化物的距离(A)lCr18Nig钢经650摄氏度.2小时敏化处理后,贫铬区内铬的分布 (根据华保定等)铬含量(%)19181716151413121110 1 2 3 4 5 6 碳化颗粒直径1000ACr18Ni10钢经6
8、00摄氏度,24小时敏化处理后,贫铬区内铬的分布 (根据Tedmon)距碳化物距离(微米)金属钢的成分*(%)CrNi Fe18.0 8.8余量700 摄氏度725摄氏度750 摄氏度775 摄氏度 9.63 9.7 8.7 10.3 7.9 6.7 8.4 8.3 82.4 83.5 82.4 81.3在下列温度敏化处理2小时后,晶间附近区域的化学成分(%)敏化处理后不锈钢晶界附近区的化学成分另含0.22% C测量方法:敏化处理后,在冷浓硫酸中浸蚀10天,分析溶液中Fe,Cr,Ni的相 对含量. 提高不锈钢抗晶间腐蚀性能的冶金方法 (1)固溶处理,避免敏化处理。 (2) 加入稳定元素钛或铌。
9、 (3)降低含碳量,冶炼低碳(C 0.03)不锈钢和超低碳(C+N 0.002)不锈钢。 晶界选择性溶解理论 在强氧化性介质(如浓硝酸)中不锈钢也会发生晶间腐蚀,但晶间腐蚀不是发生在经过敏化处理的不锈钢上,而是发生在经固溶处理的不锈钢上。用晶界区选择性溶解理论来解释。 当晶界上析出了相(FeCr金属间化合物),或是有杂质(如磷、硅)偏析,在强氧化性介质中便会发生选择性溶解,从而造成晶间腐蚀。而敏化加热时析出的碳化物有可能使杂质不富集或者程度减轻,从而消除或减少晶间腐蚀倾向。 4. 选择性腐蚀 选择性腐蚀包括成分选择性腐蚀和组织选择性腐蚀。最常见的例子是黄铜脱锌,其他如铜铝合金脱铝,青铜脱锡,铜
10、镍合金脱镍等。 黄铜脱锌破坏形式脱锌破坏形式主要有层状和栓状两类。 表 面 断 面(a) 层状脱锌(b) 带状脱锌(c) 栓状脱锌铜栓腐蚀产物穿孔黄 铜 脱 锌 类 型影响因素 (1) 锌含量高的黄铜容易发生脱锌。 (2) 黄铜中加入锡、砷、锑可以抑制脱锌。如海军黄铜含锡1%,砷0.04%,提高了抗脱锌腐蚀性能。 (3) 溶液的停滞状态,含氯离子,黄铜表面存在多孔水垢或沉积物(易形成缝隙),都能促进脱锌。 (4) 溶液的pH值可以影响脱锌的类型。 (根据抗拉强度下降算出)腐蚀深度mpy120100 80 60 40 20 020406080100120温度,0摄氏度(根据Fontana)温度对
11、三种黄铜腐蚀的影响 (在2N Nacl溶液中,经24g天水线试验)红黄铜(15%Zn)海革黄铜(37%Zn)蒙茨黄铜(40%Zn)机理解释 (1)锌的选择性溶解 这种理论认为,黄铜表面的锌原子发生选择性溶解,留下空位,稍里面的锌原子通过扩散到发生腐蚀的位置,继续发生溶解,结果留下疏松多孔的铜层。(2)溶解沉积 这种理论认为铜和锌以金属离子形式一起进入溶液,铜离子再发生还原以纯铜的形式沉积出来(称为回镀)。 灰铸铁石墨化 灰铸铁中含有网状石墨,发生腐蚀时石墨为腐蚀电池阴极,铁素体组织为阳极。铁发生选择性溶解,留下石墨残体骨架。从外形看并无多大的改变,但机械强度严重下降,极易破损。 灰铸铁构件、管
12、道在水中和土壤中极易发生这种腐蚀破坏。 5. 孔蚀和缝隙腐蚀孔蚀和缝隙腐蚀 5.1孔蚀 孔蚀即小孔腐蚀,亦称点蚀。腐蚀破坏形态是金属表面局部位置形成蚀孔或蚀坑,一般孔深大于孔径。 腐蚀的破坏特征 (1) 破坏高度集中 (2) 蚀孔的分布不均匀(3) 蚀孔通常沿重力方向发展 (4) 蚀孔口很小,而且往往覆盖有固体沉积物,因此不易发现。 (5) 孔蚀发生有或长或短的孕育期(或诱导期)。 孔蚀的引发 孔蚀的形成可分为引发和成长(发展)两个阶段。在钝态金属表面上,蚀孔优先在一些敏感位置上形成,这些敏感位置(即腐蚀活性点)包括: (1) 晶界(特别是有碳化物析出的晶界),晶格缺陷 。(2) 非金属夹杂,
13、特别是硫化物,如FeS、MnS,是最为敏感的活性点。 (3) 钝化膜的薄弱点(如位错露头、划伤等)。 Fe2+间或有C结晶含的酸性氯化物溶液()多孔锈层中性充气氯化钠溶液因杵氢偶而将锈层冲破起源于硫化物夹杂的碳钢孔蚀机理示意图根据 表示金属孔蚀倾向的电化学指标 环状阳极极化曲线上的特征电位Eb和Erp可以用来表示金属的孔蚀倾向。Eb称为击穿电位,或孔蚀电位。Erp称为孔蚀保护电位或再钝化电位。Eb、Erp愈正,Eb与Erp相差愈小(滞后环面积愈小),则金属材料发生孔蚀的倾向愈小,耐孔蚀性能愈好。*为了用Eb和Erp比较各种金属材料的耐孔蚀性能,测量Eb和Erp的实验条件必须相同。 孔蚀的影响因
14、素 (1) 金属材料 能够鈍化的金属容易发生孔蚀,故不锈钢比碳钢对孔蚀的敏感性高。金属钝态愈稳定,抗孔蚀性能愈好。孔蚀最容易发生在钝态不稳定的金属表面。对不锈钢,Cr、M0和N有利于提高抗孔蚀能力。 1.41.21.00.80.60.40.20 30 40 50 60 70 80温度(0摄氏度)孔蚀电位(V.SCE)三种不锈钢在3.5%Nacl溶液中的孔蚀电位比较(根据原田)0Cr22Ni5Mo2复相不锈钢1Cr17Ni2MO20Cr19Ni9孔蚀电位(伏)(SCE) 1.00.5 020 40 60 80 海水温度(0摄氏度)几种不锈钢的孔蚀电位 与海水温度的关系(敞口体系)(根据安保山)2
15、5-13-1MO-N25-5-2MO18-12-2MO18-101.61.20.80.4 010 20 30 40孔蚀电位(伏)Cr (%)孔蚀临界Cl-离子浓度与Cr含量的关系 H+=iN铬含量(%)孔蚀临界Cl-离子浓度(N)FeFe-5.6CrFe-11.6CrFe-20CrFe-24.5CrFe-29.4Cr0.00030.0170.0690.11.01.0根据(Stolica)孔蚀电位与Fe-Cr合金中Cr含量的关系试验溶液: 0.1NNacl. PH=2,室温(根据Kolotyrkin)(2) 环境 活性离子能破坏钝化膜,引发孔蚀。 一般认为,金属发生孔蚀需要Cl- 浓度达到某个最
16、低值(临界氯离子浓度)。这个临界氯离子浓度可以作为比较金属材料耐蚀性能的一个指标,临界氯离子浓度高,金属耐孔蚀性能好 。 缓蚀性阴离子 缓蚀性阴离子可以抑制孔蚀的发生。 孔蚀电位(伏)0.350.300.250.200.15 0.01 0.05 0.1 0.5 1Cl-离子活度对18-8不锈钢孔蚀电位的影响25摄氏度,Nacl溶液 (根据Leckie,Uhlig) pH值 在较宽的pH值范围内,孔蚀电位Eb与溶液pH值关系不大。当pH10,随PH值升高,孔蚀电位增大,即在碱性溶液中,金属孔蚀倾向较小。 温度温度升高,金属的孔蚀倾向增大。当温度低于某个温度,金属不会发生孔蚀。这个温度称为临界孔蚀
17、温度(CPT) ,CPT愈高,则金属耐孔蚀性能愈好。 0.850.650.450.250.05孔蚀电位(伏) 3 5 7 9 11PH溶液PH值对不锈钢在3%Nacl溶液中孔蚀电位的影响 (根据Smialowska)18-12-2MO18-10Cr178 642400206080无腐蚀(CT(0C)=-(45+5)+11%M0(1)(PT(0C)=5+7%M0(2)(PT(0C)=10+7%M0(3)(4)(PT(0C)=5+11%M0(PT(0C)=25+8%M0缝隙腐蚀孔蚀和缝隙腐蚀温度(0C)Cr-Ni奥氏体不锈钢(含18Cr)的缝隙临界温度(CCT)和孔蚀临界温度(CPT)与Mo含量的
18、关系试验溶液:10Fecl3 (根据Brigham)钢成份(2)0.2%N (3)0.5%Mn(4)3.5%Si或25%Cr M0加入量(%) 流动状态 在流动介质中金属不容易发生孔蚀,而在停滞液体中容易发生,这是因为介质流动有利于消除溶液的不均匀性,所以输送海水的不锈钢泵在停运期间应将泵内海水排尽。 5.2 缝隙腐蚀 缝隙腐蚀是指腐蚀破坏发生在金属表面上的缝隙部位,在缝隙内区域,腐蚀破坏形态可以是蚀孔,蚀坑,也可能是全面腐蚀。 缝隙种类 (1) 机器和设备上的结构缝隙 (2) 固体沉积(泥沙、腐蚀产物等)形成的缝隙。 (3) 金属表面的保护模 (如瓷漆、清漆、磷化层、金属涂层)与金属基体之间
19、形成的缝隙。 缝隙尺寸 造成缝隙腐蚀的缝隙是狭缝,一般认为其尺寸在0.025 0.1毫米范围。宽度太小则溶液不能进入,不会造成缝内腐蚀;宽度太大则不会造成物质迁移困难,缝内腐蚀和缝外腐蚀无大的差别。 影响因素 (1)金属材料 几乎所有的金属材料都会发生缝隙腐蚀 ,钝态的金属对缝隙腐蚀最为敏感 。(2)环境几乎所有溶液中都能发生缝隙腐蚀,以含溶解氧的中性氯化物溶液最常见 。评定方法 (同孔蚀) 86420 12 24 36 48-0.9-0.7-0.5-0.1 0 0.1 2 4 6 8缝隙宽度: 1 3.5mm 2 2.7mm 3 2.0mm氧浓度(升/毫克)时间(小时)缝隙内海水中氧浓度的变
20、化 玻璃-钛缝隙123氧浓度(毫克/升)海水中氧的浓度对铝合金和钛合金电位的影响转引自P48.49铝合金10410210010-2 6 4 2主体溶液Cl-浓度(ppm) 100200 1000 10000PH10410210010-2102 103 104 105Cl-(ppm)缝隙腐蚀模拟试验条件下,阳极区溶液中H+,Cl-离子随电解电量(腐蚀速率)的变化 (Cr18Ni10钢,去离子水+Nacl,80摄氏度) (根据小野山弓) 闭塞腐蚀电池理论 闭塞电池的概念由于闭塞的几何条件(缝隙、孔蚀、裂纹)造成溶液的停滞状态,使物质的迁移困难,结果使闭塞区内腐蚀条件强化,闭塞区内外电化学条件形成很
21、大的差异,结果闭塞区内金属表面发生活性溶解腐蚀,使孔蚀和缝隙腐蚀以很大的速度扩展。闭塞腐蚀电池的工作过程 (1)缝隙内氧的贫乏 由于缝隙内贫氧,缝隙内外形成氧浓差电池。缝隙内金属表面为阳极,缝外自由表面为阴极。(2)金属离子水解、溶液酸化(3) 缝隙内溶液pH值下降,达到某个临界值,不锈钢表面钝化膜破坏,转变为活态,缝隙内金属溶解速度大大增加。(4)上述过程反复进行,互相促进,整个腐蚀过程具有自催化特性。 eeeeeeeeo2OH-OH-M+M+o2Na+Na+Na+Cl-M+o2OH-o2OH-M+o2OH-M+Cl-Na+eeeo2OH-OH-o2M(OH)2M+M+M+M+M+M+Cl-
22、M+M+Cl-M+M+M+Cl-Cl-M+Cl-Cl-Na+o2Cl-o2o2OH-初期阶段后期阶段金属在海水中(中性氯化物溶液)缝隙腐蚀局部腐蚀 孔蚀和缝隙腐蚀的比较 孔蚀和缝隙腐蚀有许多相同之处。首先,耐蚀性依赖于钝态的金属材料在含氯化物的溶液中容易发生,造成典型的局部腐蚀。其次,孔蚀和缝隙腐蚀成长阶段的机理都可以用闭塞电池自催化效应说明。 但孔蚀和缝隙腐蚀也有许多不同之处。第一,孔蚀的闭塞区是在腐蚀过程中形成的,闭塞程度较大;而缝隙腐蚀的闭塞区在开始就存在,闭塞程度较小。 第二,孔蚀发生需要活性离子(如Cl- 离子),缝隙腐蚀则不需要,虽然在含Cl- 离子的溶液中更容易发生,第三,孔蚀的
23、临界电位Eb较缝隙腐蚀临界电位Eb高,Eb与Erp之间的差值较缝隙腐蚀小(在相同试验条件下测量),而且在Eb与Erp之间的电位范围内不形成新的孔蚀,只是原有的蚀孔继续成长,但在这个电位范围内缝隙腐蚀既可以发生也可以成长。 6. 应力腐蚀应力腐蚀 应力腐蚀是应力和环境腐蚀的联合作用造成的金属破坏。在固定(静止)应力情况,称为应力腐蚀破裂(或应力腐蚀开裂),记为SCC;在循环应力情况,称为腐蚀疲劳,记为CF。 特征 (1) 主要是合金发生SCC,纯金属极少发生 (2) 对环境的选择性形成了所谓“SCC的材料环境组合”。 金属或合金腐 蚀 介 质软钢碳钢和低合金钢奥氏体不锈钢铜和铜合金镍和镍合金蒙乃
24、尔合金铝合金铅镁NaOH,硝酸盐溶液,(硅酸纳+硝酸钙)溶液42%Mgcl2溶液,HCNNaCIO溶液,海水,H2S水溶液氯化物溶液,高温高压蒸馏水氨蒸气,汞盐溶液,含SO2大气NaOH水溶液,HF酸,氟硅酸溶液熔融Nacl,Nacl水溶液,海水,水蒸气,含SO2大气Pb(AC)2溶液海洋大气,蒸馏水,Kcl-K2CrO4溶液产生应力腐蚀破裂的材料-介质组合 (局部腐蚀)(3) 只有拉应力才引起SCC,压应力反而会阻止或延缓SCC的发生。 (4) 裂缝方向宏观上和拉引力垂直,其形态有晶间型,穿晶型,混合型。 (5) SCC有孕育期,因此SCC的破断时间tf可分为孕育期,发展期和快断期三部分。
25、(6)发生SCC的合金表面往往存在钝化膜或其他保护膜,在大多数情况下合金发生SCC时均匀腐蚀速度很小,因此金属失重甚微。 合金耐SCC性能的评定 恒应变试验恒载荷试验 SCC的影响因素 力学因素(1)应力使材料发生形变,而形变使表面膜破裂。应力与环境腐蚀的相互促进,才使得材料在很弱的腐蚀性介质中发生破坏。(2)临界应力和临界应力强度因子 破裂速度试样延伸比率裂纹深度暴露时间拉伸载荷下应力腐蚀破裂扩展速度与裂纹深度的关系恒载荷应力腐蚀破裂试验中试样延伸率与时间的关系破裂破裂 施加应力(2米厘/磅1000) 80 70 60 50 40 30 20 10 00.1 1 10 100 1000 型号
26、 310 314型号 305 309 316 347 347-2 型号 304 3041 断裂时间(小时) 工业不锈钢耐应力腐蚀破裂性能的比 (沸腾42%Mgcl2试验) 根据(Denhard) 40 30 20 101 3 5 10 30 50 100 300 500 1000 外应加力(2米毫/斤公) 破裂时间(小时)各种Cr-Ni奥氏体不锈钢在沸腾的45%Mgcl2溶液中的应力-断裂时间曲线(根据森田)O O O O18-831616Cr/12Ni 310Mo18Cr/20Ni/Mo/Cu31020Cr/30Ni/Mo/Cu31420Cr/34NiO O18-12-2Cu-3Si 低于某
27、个临界值th时,材料不发生破裂,th称为SCC临界应力。th愈大,材料耐SCC性能愈好。 腐蚀因素(1)SCC对环境有选择性(2)氧化剂的存在有决定性作 用(3)温度有着重要的影响。一般来说,温度升高,材料发生SCC的倾向增 大。 (4)干湿交替环境使有害离子浓缩,SCC更容易发生 。 氧PPM1000 100 10 1 0。10。010。1 1 10 100 1000氯化物PPM 破裂 不破裂 数字为试样数目 根据(Lee Williams)3322224222222333111125111碱-磷盐处理的锅炉水中氯化物和氧含量对奥氏体不锈钢应力腐蚀破裂的影响 温度OF 400 300 200
28、 1000 20 40 60 80 100 120产生破裂所需要的时间(小时)温度对破裂诱发时间的影响,316及347型不锈钢在含875ppm Nacl的水中 (根据Fontant等)347型316型冶金因素 合金的化学成分、热处理、组织结构、加工状态对其SCC敏感性都有影响。 对于奥氏体不锈钢在氯化物溶液中的SCC来说,提高Ni含量,加入硅、铜,有利于提高抗SCC性能。 增加碳含量也有利于提高耐SCC性能,但含碳量大则容易产生晶间性SCC。 拉应力(2米厘/磅0001) 40 30 20 10 0 5 10 15 20 25 30 35 40 铁素体(体积%)铁素体含量对几种铸态不锈合金发生
29、应力腐蚀破裂所需应力的影响图中也画出了铁素体含量为零的304和316型试验方法:试样没泡在温度400OF,含875ppm氯化物的冷凝水液中,8小时。 (根据Fontant等)304型316型CF-3CF-8CF-8M破裂时间(小时)1000100101020406080oo oo oo o o o ooo破裂不破裂商品系O30天内破裂镍(%)根据(Copson)碳含量(%)0。200。160。120。080。04 0 20 40 60 80 120最短破裂时间碳在铁素体中溶解度范围500小时内不破裂含碳量对碳钢在沸腾硝酸钙铵溶液中应力腐蚀破裂的影响(根据Pakins)镍含量对铁铬镍丝在沸腾42
30、%Mgcl2中应力腐蚀破裂的影响 局 部 腐 蚀破裂时间(小时) 100 50 10 5 1 0。50 20 40 60 80 100铁素体量(%面积)根据(铃木弓)Cr 2123%,Ni 110%复相不锈钢耐应力与钢中铁素体含量的关系应力:25kg/mn2沸腾:42%Mgcl2 应力腐蚀破裂的机理 SCC的机理有两种:阳极溶解(AD)机理氢致开裂(HIC)机理。 阴极C阴极C溶液静态金属阳极区(稳定阳极)AAA*迅速屈服屈服金属阳极区(动力阳极)A区 (裂纹两侧) 电流密度 10-5A/cm2A*区 (裂纹尖端)电流密度 0.5A/cm21/2O2+H2O+2e 2OH-奥氏体不锈钢应力腐蚀
31、破裂模型图(根据Hoar)氧化物 腐蚀产物随H+阴极还原氢进入合金中H+e H(Fe)H2H氢引起马氏体小片形成成为裂纹扩展的敏感途径在扩展的裂纹中的阳极反应当(H+)建立(可能是慢的一步)从孔蚀形成显微裂纹在裂纹中阳极反应得到高浓度(H+)如:2Cr+3H2O Cr2O3+6H+6eH2出口Cl-离子使钝化膜破坏产生的孔蚀H钝化表面上的阴极反应:2H2O+2e H2+2OH-+H2O+2e 2OH-在氯化物介质中奥氏体不锈钢裂纹形成和扩展模型(根据Rhodes)腐蚀疲劳 在循环应力(交变应力)和腐蚀环境的联合作用下金属材料发生的严重腐蚀破坏叫做腐蚀疲劳(简记为CF)。 SN曲线和疲劳极限在腐
32、蚀环境中疲劳极限不存在,即在低应力下造成断裂的循环数仍与应力有关。为了便于对各种金属材料耐腐蚀疲劳性能进行比较,一般是规定一个循环次数(如107),从而得出名义的腐蚀疲劳极限,记为-1c。 腐蚀疲劳的特征 (1) 任何金属(包括纯金属)在任何介质中都能发生腐蚀疲劳,即不要求特定的材料环境组合。 (2) 环境条件(腐蚀介质条件种类、温度、pH、氧含量等)对材料的腐蚀疲劳行为都有显著影响。 (3) 纯疲劳性能与循环频率无关,腐蚀疲劳性能与频率有关。 (4) 与应力腐蚀破裂相比,腐蚀疲劳裂纹主要为穿晶型。 (5) 对金属材料进行阴极极化,可使裂纹扩展速度明显降低。 腐蚀疲劳机理 一般是用金属材料的疲
33、劳机理和电化学腐蚀作用结合来说明腐蚀疲劳的机理。 孔蚀或其他局部腐蚀造成缺口,缝隙,引起应力集中,造成滑移。滑移台阶的腐蚀溶解使逆向加载时表面不能复原,成为裂纹源。反复加载使裂纹不断扩展,腐蚀作用使裂纹扩展速度加快。 在交变应力作用下,滑移具有累积效应,表面膜更容易遭到破坏。 7. 磨损腐蚀磨损腐蚀 定义 高速流动的腐蚀介质(气体或液体)对金属材料造成的腐蚀破坏叫做磨损腐蚀(erosion-Corrosion),简称磨蚀,也叫做冲刷腐蚀。 影响因素 (1) 耐磨损腐蚀性能与它的耐蚀性和耐磨性都有关系。(2) 表面膜的保护性能和损坏后的修复能力,对材料耐磨损腐蚀性能有决定性的作用。 (3)流速
34、流速对金属材料腐蚀的影响是复杂的,当液体流动有利于金属鈍化时,流速增加将使腐蚀速度下降。流动也能消除液体停滞而使孔蚀等局部腐蚀不发生。只有当流速和流动状态影响到金属表面膜的形成、破坏和修复时,才会发生磨损腐蚀。 (4)液体中含量悬浮固体颗粒(如泥浆、料浆)或气泡,气体中含有微液滴 (如蒸气中含冷凝水滴),都使磨损腐蚀破坏加重。 典 型 腐 蚀 率 (mdd)1英尺/每秒(1)4英尺/每秒(2)27英尺/每秒(3)材 料碳钢铸铁硅青铜海革黄铜Hydraulic青铜G青铜铝青铜(10%Al)铝黄铜GO-10CuNi(0.8%Fe)TO-30CuNi(0.05%Fe)Monel(Ni70Cu30)3
35、16型不锈钢Hastelloy C钛 34 45 1 2 4 7 5 2 5 211110 72-22012-110-25427034317033923610599199394130 (1)浸入海潮中 (2)浸入人工海水沟中 (3)挂在浸没的转盘上不 同 流 速 的 海 水 对 金 属 的 腐 蚀 磨损腐蚀的两种重要形式 湍流腐蚀和冲击腐蚀 高速流体或流动截面突然变化形成了湍流或冲击,对金属材料表面施加切应力,使表面膜破坏。湍流形成的切应力使表面膜破坏,不规则的表面使流动方向更为紊乱,产生更强的切应力,在磨损和腐蚀的协同作用下形成腐蚀坑 (a)(b)(c)(d) 湍流造成磨损腐蚀坑的机理 根据
36、C。LOSS等,转引自Conosion ProcessesP177空泡腐蚀 空泡腐蚀(Cavitation erosion)又叫气蚀、穴蚀。当高速流体流经形状复杂的金属部件表面在某些区域流体静压可降低到液体蒸气压之下,因而形成气泡在高压区气泡受压力而破灭。气泡的反复生成和破灭产生很大的机械力使表面膜局部毁坏,裸露出的金属受介质腐蚀形成蚀坑。蚀坑表面可再鈍化,气泡破灭再使表面膜破坏。有的文献上将摩振腐蚀(fretting)也划归磨损腐蚀 。(1)形成气泡 (2)气泡破灭,膜破坏 (3)重新成膜(4)形成新气泡 (5)气泡破灭,膜毁坏 (6)重新成膜 空泡腐蚀各步骤示意图 (根据 Henlee)冷焊前氧化颗粒接触点磨损 氧化理论氧化物层暴露的金属氧化物颗粒摩 振 腐 蚀 理 论 示 意 图