1、 开课系:理学院开课系:理学院 统计与金融数学系统计与金融数学系课程主页课程主页: xxx1谢谢你的观赏谢谢你的观赏序序序序序序 言言言言言言概率论是研究什么的?2谢谢你的观赏谢谢你的观赏第一章第一章 随机事件及其概率随机事件及其概率随机事件及其运算随机事件及其运算概率的定义及其运算概率的定义及其运算条件概率条件概率事件的独立性事件的独立性 3谢谢你的观赏谢谢你的观赏1.1随机事件及其概率随机事件及其概率一、随机试验一、随机试验(简称简称“试验试验”)随机试验的特点(p2)1.可在相同条件下重复进行; 2.试验可能结果不止一个,但能确定所有的可能结果;3.一次试验之前无法确定具体是哪种结果出现
2、。 随机试验可表为E 4谢谢你的观赏谢谢你的观赏E1: 抛一枚硬币,分别用“H” 和“T” 表示出正面和反面;E2: 将一枚硬币连抛三次,考虑正反面出现的情况;E3:将一枚硬币连抛三次,考虑正面出现的次数;E4:掷一颗骰子,考虑可能出现的点数;E5: 记录某网站一分钟内受到的点击次数;E6:在一批灯泡中任取一只,测其寿命;E7:任选一人,记录他的身高和体重 。随机实验的例随机事件5谢谢你的观赏谢谢你的观赏二、样本空间二、样本空间(p2) 1、样本空间:实验的所有可能结果所组成的集合称为样本空间,记为S=e; 2、样本点: 试验的每一个结果或样本空间的元素称为一个样本点,记为e. 3.由一个样本
3、点组成的单点集由一个样本点组成的单点集称为一个基本事件,也记为e. EX EX 给出给出E1-E7的样本空间的样本空间幻灯片 66谢谢你的观赏谢谢你的观赏随机事件随机事件 1.定义定义 (p3定义1.1.2) 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件”.记作A、B、C等任何事件均可表示为样本空间的某个子集任何事件均可表示为样本空间的某个子集.称事件事件A发生发生当且仅当试验的结果是子集A中的元素 2.两个特殊事件两个特殊事件: 必然事件S 、不可能事件.(p3)例如例如 对于试验E2 ,以下A 、 B、C即为三个随机事件:A“至少出一个正面” HHH, HHT, HTH,
4、THH,HTT,THT,TTH;B=“两次出现同一面”=HHH,TTTC=“恰好出现一次正面”=HTT,THT,TTH 再如,试验E6中D“灯泡寿命超过1000小时”x:1000 xm),要求第要求第 i i 组恰组恰有有ni个球个球(i=1,m),共有分法:,共有分法:32谢谢你的观赏谢谢你的观赏4 4 随机取数问题随机取数问题例例4 4 从从1 1到到200200这这200200个自然数中任取一个个自然数中任取一个, ,(1)(1)求取到的数能被求取到的数能被6 6整除的概率整除的概率(2)(2)求取到的数能被求取到的数能被8 8整除的概率整除的概率(3)(3)求取到的数既能被求取到的数既
5、能被6 6整除也能被整除也能被8 8整除的概率整除的概率解解: :N(S)=200,N(S)=200,N(3)=200/24=8N(3)=200/24=8N(1)=200/6=33,N(1)=200/6=33,N(2)=200/8=25N(2)=200/8=25(1),(2),(3)(1),(2),(3)的概率分别为的概率分别为:33/200,1/8,1/25:33/200,1/8,1/2533谢谢你的观赏谢谢你的观赏某人向目标射击,某人向目标射击,以以A A表示事件表示事件“命中目标命中目标”,P P(A A)= =?定义定义:(p9) 事件事件A在在n次重复试验中出现次重复试验中出现nA次
6、,则次,则比值比值nA/n称为事件称为事件A在在n次重复试验中次重复试验中出现的出现的频率频率,记为,记为fn(A). 即即fn(A) nA/n.1.3 频率与概率频率与概率34谢谢你的观赏谢谢你的观赏历史上曾有人做过试验,试图证明抛掷匀质硬币时,出现正反面的机会均等。 实验者实验者 n nH fn(H)De Morgan 2048 1061 0.5181 Buffon 4040 2048 0.5069K. Pearson 12000 6019 0.5016K. Pearson 24000 12012 0.500535谢谢你的观赏谢谢你的观赏 频率的性质频率的性质(1) 0 fn(A) 1;(
7、2) fn(S)1; fn( )=0(3) 可加性:若可加性:若AB ,则,则 fn(A B) fn(A) fn(B).实践证明:当试验次数实践证明:当试验次数n增大时,增大时, fn(A) 逐渐逐渐趋向一个稳定值趋向一个稳定值。可将此稳定值记作可将此稳定值记作P(A),作为事件作为事件A的概率的概率36谢谢你的观赏谢谢你的观赏1.3.2. 概率的公理化定义概率的公理化定义 注意到不论是对概率的直观理解,还是频率定义方式,作为事件的概率,都应具有前述三条基本性质,在数学上,我们就可以从这些性质出发,给出概率的公理化定义37谢谢你的观赏谢谢你的观赏1.定义定义(p10) 若对随机试验E所对应的样
8、本空间中的每一事件A,均赋予一实数P(A),集合函数P(A)满足条件:(1) P(A) 0;(2) P(S)1; (3) 可列可加性可列可加性:设A1,A2,, 是一列两两互不相容的事件,即AiAj,(ij), i , j1, 2, , 有 P( A1 A2 ) P(A1) P(A2)+. (1.1)则称P(A)为事件A的概率概率。38谢谢你的观赏谢谢你的观赏2.概率的性质概率的性质 P(10-13) (1) 有限有限可加性可加性:设A1,A2,An , 是n个两两互不相容的事件,即AiAj ,(ij), i , j1, 2, , n ,则有 P( A1 A2 An) P(A1) P(A2)+
9、 P(An); (3)事件差事件差 A、B是两个事件,则P(A-B)=P(A)-P(AB)(2) 单调不减性单调不减性:若事件AB,则P(A)P(B) 39谢谢你的观赏谢谢你的观赏(4) 加法公式加法公式:对任意两事件A、B,有 P(AB)P(A)P(B)P(AB) 该公式可推广到任意n个事件A1,A2,An的情形;(3) 互补性互补性:P(A)1 P(A);(5) 可分性可分性:对任意两事件A、B,有 P(A)P(AB)P(AB ) . 40谢谢你的观赏谢谢你的观赏某市有甲某市有甲,乙乙,丙三种报纸丙三种报纸,订每种报纸的人数订每种报纸的人数分别占全体市民人数的分别占全体市民人数的30%,其
10、中有其中有10%的人的人同时定甲同时定甲,乙两种报纸乙两种报纸.没有人同时订甲乙或乙没有人同时订甲乙或乙丙报纸丙报纸.求从该市任选一人求从该市任选一人,他至少订有一种报他至少订有一种报纸的概率纸的概率.%80000%103%30)()()()()()()()(ABCPBCPACPABPCPBPAPCBAP解解:设设A,B,C分别表示选到的人订了甲分别表示选到的人订了甲,乙乙,丙报丙报41谢谢你的观赏谢谢你的观赏例例1.3.2.1.3.2.在在1 1 1010这这1010个自然数中任取一数,求个自然数中任取一数,求(1 1)取到的数能被)取到的数能被2 2或或3 3整除的概率,整除的概率,(2
11、2)取到的数即不能被)取到的数即不能被2 2也不能被也不能被3 3整除的概率,整除的概率,(3 3)取到的数能被)取到的数能被2 2整除而不能被整除而不能被3 3整除的概率。整除的概率。解解:设设A取到取到的数能被的数能被2 2整除整除; ;B-B-取到取到的数能被的数能被3 3整除整除21)(AP103)(BP故故)()()()() 1 (ABPBPAPBAP101)(ABP107)(1)()2(BAPBAP103)()()()3(ABPAPBAP5242谢谢你的观赏谢谢你的观赏 袋中有十只球,其中九只白球,一只红球,袋中有十只球,其中九只白球,一只红球,十人依次从袋中各取一球十人依次从袋中
12、各取一球(不放回不放回),问,问第一个人取得红球的概率是多少?第一个人取得红球的概率是多少?第第二二 个人取得红球的概率是多少?个人取得红球的概率是多少?1.4 条件概率条件概率43谢谢你的观赏谢谢你的观赏若已知第一个人取到的是白球,则第二个人取到红球的概率是多少?已知事件A发生的条件下,事件B发生的概率称为A条件下B的条件概率,记作P(B|A)若已知第一个人取到的是红球,则第二个人取到红球的概率又是多少?44谢谢你的观赏谢谢你的观赏一、条件概率一、条件概率例1 设袋中有3个白球,2个红球,现从袋中任意抽取两次,每次取一个,取后不放回,(1)已知第一次取到红球,求第二次也取到红球的概率; (2
13、)求第二次取到红球的概率(3)求两次均取到红球的概率设A第一次取到红球,B第二次取到红球41)|() 1 (ABP522312)()2(25PBP10112)()3(25PABP45谢谢你的观赏谢谢你的观赏S=ABA第一次取到红球,B第二次取到红球46谢谢你的观赏谢谢你的观赏显然,若事件A、B是古典概型的样本空间S中的两个事件,其中A含有nA个样本点,AB含有nAB个样本点,则) 1 . 4 . 1 ()()()|(APABPABPAABnnABP)|(称为事件A发生的条件下事件B发生的条件概率条件概率(p14)一般地,设A、B是S中的两个事件,则)()(APABPnnnnAAB47谢谢你的观
14、赏谢谢你的观赏“条件概率条件概率”是是“概率概率”吗?吗?何时何时P(A|B)=P(A)?P(A|B)=P(A)?何时何时P(A|B)P(A)?P(A|B)P(A)?何时何时P(A|B)P(A)?P(A|B)0,则 P(AB)P(A)P(B|A). (1.4.2)式(1.4.2)就称为事件A、B的概率乘法公式乘法公式。 式(1.4.2)还可推广到三个事件的情形: P(ABC)P(A)P(B|A)P(C|AB). (1.4.3) 一般地,有下列公式: P(A1A2An)P(A1)P(A2|A1).P(An|A1An1). (1.4.4)50谢谢你的观赏谢谢你的观赏例例3 3 合中有合中有3 3个
15、红球,个红球,2 2个白球,每次从袋中任个白球,每次从袋中任取一只,观察其颜色后放回,并再放取一只,观察其颜色后放回,并再放入一只与所取之球颜色相同的球,若从合中连续入一只与所取之球颜色相同的球,若从合中连续取球取球4 4次次, ,试求第试求第1 1、2 2次取得白球、次取得白球、第第3 3、4 4次取得红球的概率。次取得红球的概率。解:设解:设A Ai i为第为第i i次取球时取到白球,则次取球时取到白球,则)|()|()|()()(32142131214321AAAAPAAAPAAPAPAAAAP52)(1AP63)|(12AAP73)|(213AAAP84)|(3214AAAAP51谢谢
16、你的观赏谢谢你的观赏三、全概率公式与贝叶斯公式三、全概率公式与贝叶斯公式例4.(p16)市场上有甲、乙、丙三家工厂生产的同一品牌产品,已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三家工厂的次品率分别为 2、1、3,试求市场上该品牌产品的次品率。买到一件丙厂的产品买到一件乙厂的产品买到一件甲厂的产品:买到一件次品设::321AAAB)()|()()|()()|(332211APABPAPABPAPABP0225. 02103. 04101. 04102. 0)()()()(321BAPBAPBAPBP52谢谢你的观赏谢谢你的观赏定义定义 (p17)事件组A1,A2,An (n可为),
17、称为样本空间S的一个划分,若满足:.,.,2 , 1,),(,)(;)(1njijiAAiiSAijiniiA1A2AnB53谢谢你的观赏谢谢你的观赏定理定理1、(p17) 设设A1,, An是是S的一个划的一个划分,且分,且P(Ai)0,(i1,n),则对任何事件则对任何事件B S有有 ) 5 . 4 . 1 ()|()()(1niiiABPAPBP式式(1.4.5)就称为就称为全概率公式全概率公式。54谢谢你的观赏谢谢你的观赏例例5 (P17)有甲乙两个袋子,甲袋中有两个白有甲乙两个袋子,甲袋中有两个白球,球,1个红球,乙袋中有两个红球,一个白个红球,乙袋中有两个红球,一个白球这六个球手感
18、上不可区别今从甲袋中球这六个球手感上不可区别今从甲袋中任取一球放入乙袋,搅匀后再从乙袋中任取任取一球放入乙袋,搅匀后再从乙袋中任取一球,问此球是红球的概率?一球,问此球是红球的概率?解:设A1从甲袋放入乙袋的是白球;A2从甲袋放入乙袋的是红球;B从乙袋中任取一球是红球;12731433221)()|()()|()(2211APABPAPABPBP甲乙55谢谢你的观赏谢谢你的观赏定理定理2 2 (p18) 设A1,, An是S的一个划分,且P(Ai) 0,(i1,n),则对任何事件BS,有 )6 . 4 . 1 (),.,1( ,)|()()|()()|(1njABPAPABPAPBAPniii
19、jjj式(1.4.6)就称为贝叶斯公式贝叶斯公式。思考:上例中,若已知取到一个红球,则从甲袋放入乙袋的是白球的概率是多少?答答: :74127)()|()()()|(1111APABPBPBAPBAP56谢谢你的观赏谢谢你的观赏(P22,22.) (P22,22.) 商店论箱出售玻璃杯,每箱20只,其中每箱含0,1,2只次品的概率分别为0.8, 0.1, 0.1,某顾客选中一箱,从中任选4只检查,结果都是好的,便买下了这一箱.问这一箱含有一个次品的概率是多少?解解: :设A:从一箱中任取4只检查,结果都是好的. B0, B1, B2分别表示事件每箱含0,1,2只次品已知:P(B0)=0.8,
20、P(B1)=0.1, P(B2)=0.11)|(0BAP54)|(4204191CCBAP1912)|(4204182CCBAP由Bayes公式:20111)|()()|()()|(iiiBAPBPBAPBPABP0848. 019121 . 0541 . 018 . 0541 . 057谢谢你的观赏谢谢你的观赏例6(p18)数字通讯过程中,信源发射0、1两种状态信号,其中发0的概率为0.55,发1的概率为0.45。由于信道中存在干扰,在发0的时候,接收端分别以概率0.9、0.05和0.05接收为0、1和“不清”。在发1的时候,接收端分别以概率0.85、0.05和0.1接收为1、0和“不清”。
21、现接收端接收到一个“1”的信号。问发端发的是0的概率是多少?)BA (P)A(P)AB(P)A(P)AB(P)A(P)AB(P 0.067解:设A-发射端发射0, B- 接收端接收到一个“1”的信号45. 085. 055. 005. 055. 005. 00 (0.55)0 1 0 1 不不清清(0.9)(0.05)(0.05)1 (0.45)1 0 1 0 不不清清(0.85)(0.05)(0.1)58谢谢你的观赏谢谢你的观赏条件概率 条件概率条件概率 小小 结结缩减样本空间 定义式 乘法公式 全概率公式 贝叶斯公式59谢谢你的观赏谢谢你的观赏1.5 事件的独立性事件的独立性一、两事件独立
22、一、两事件独立(P19) 定义定义1 设A、B是两事件,P(A) 0,若 P(B)P(B|A) (1.5.1)则称事件A与B相互独立。式(1.5.1)等价于: P(AB)P(A)P(B) (1.5.2)60谢谢你的观赏谢谢你的观赏从一付从一付5252张的扑克牌中任意抽取一张,张的扑克牌中任意抽取一张,以以A A表示抽出一张表示抽出一张A A,以,以B B表示抽出一张表示抽出一张黑桃,问黑桃,问A A与与B B是否独立?是否独立?定理、定理、以下四件事等价:(1)事件A、B相互独立;(2)事件A、B相互独立;(3)事件A、B相互独立;(4)事件A、B相互独立。61谢谢你的观赏谢谢你的观赏二、多个
23、事件的独立二、多个事件的独立定义定义2、(p20) 若三个事件A、B、C满足:(1) P(AB)=P(A)P(B), P(AC)=P(A)P(C), P(BC)=P(B)P(C),则称事件A、B、C两两相互独立两两相互独立;若在此基础上还满足:(2) P(ABC)P(A)P(B)P(C), (1.5.3)则称事件A、B、C相互独立相互独立。62谢谢你的观赏谢谢你的观赏一般地,设A1,A2,An是n个事件个事件,如果对任意k (1kn), 任意的1i1i2 ik n,具有等式 P(A i1 A i2 A ik)P(A i1)P(A i2)P(A ik) (1.5.4)则称n个事件个事件A1,A2
24、,An相互独立相互独立。思考:思考:1.设事件A、B、C、D相互独立,则独立吗?与CDBA2.一颗骰子掷4次至少得一个六点与两颗骰子掷24次至少得一个双六,这两件事,哪一个有更多的机会遇到?答:0.518, 0.49663谢谢你的观赏谢谢你的观赏三、事件独立性的应用三、事件独立性的应用1、加法公式的简化加法公式的简化:若事件A1,A2,An相互独立, 则 (1.5.5)2、在可靠性理论上的应用在可靠性理论上的应用P23, 24如图,1、2、3、4、5表示继电器触点,假设每个触点闭合的概率为p,且各继电器接点闭合与否相互独立,求L至R是通路的概率。)().(1).121nnAPAPAAAP64谢
25、谢你的观赏谢谢你的观赏设设A-L至至R为通路为通路,Ai-第第i个继电器通个继电器通,i=1,2,5)()|(52413AAAAPAAP422pp )()|(54213AAAAPAAP)()()|(54213AAPAAPAAP22)2(pp由全概率公式由全概率公式)()|()()|()(3333APAAPAPAAPAP54322522pppp65谢谢你的观赏谢谢你的观赏EX1:一个学生欲到三家图书馆借一本参考书每家图书馆购进这种书的概率是1/2,购进这种书的图书馆中该书被借完了的概率也是1/2各家图书馆是否购进该书相互独立问该学生能够借到书的概率是多少?第一章第一章 小结小结本章由六个概念(随机试验、事件、概率、条件概率本章由六个概念(随机试验、事件、概率、条件概率、独立性),四个公式(加法公式、乘法公式、全概、独立性),四个公式(加法公式、乘法公式、全概率公式、贝叶斯公式)和一个概型(古典概型)组成率公式、贝叶斯公式)和一个概型(古典概型)组成66谢谢你的观赏谢谢你的观赏67谢谢你的观赏谢谢你的观赏