1、智能中国网提供学习支持智能中国网提供学习支持2.22.2感知器神经网络模型感知器神经网络模型与学习算法与学习算法2022-6-162.2.12.2.1单层感知器单层感知器p概述概述由美国学者Rosenblatt在1957年首次提出学习算法是Rosenblatt在1958年提出的 包含一个突触权值可调的神经元 属于前向神经网络类型 只能区分线性可分的模式 IEEE设立以其名字命名的奖项 2022-6-162.2.12.2.1单层感知器单层感知器p单层感知器模型单层感知器模型1miiiuw x f(v)x1by=f(v)x2xiw1xmw2wmwi1miiivw xb2022-6-162.2.12
2、.2.1单层感知器单层感知器p单层感知器工作原理单层感知器工作原理 单层感知器可将外部输入分为两类。当单层感知器可将外部输入分为两类。当感知器的输出为感知器的输出为+1+1时,输入属于时,输入属于 类,当感知类,当感知器的输出为器的输出为-1-1时,输入属于时,输入属于 类,从而实现两类,从而实现两类目标的识别。在二维空间,单层感知器进行类目标的识别。在二维空间,单层感知器进行模式识别的判决超平面由下式决定:模式识别的判决超平面由下式决定: 10miiiw xb1l2l2022-6-162.2.12.2.1单层感知器单层感知器p单层感知器工作原理单层感知器工作原理 对于只有两个输入的判别边界是
3、直线(如下式所示),选择合适的学习算法可训练出满意的 和 ,当它用于两类模式的分类时,相当于在高维样本空间中,用一个超平面将两类样本分开。1 12 20wxwxb 1w2w2022-6-162.2.22.2.2单层感知器的学习算法单层感知器的学习算法p单层感知器学习算法思想单层感知器学习算法思想基于迭代的思想,通常是采用误差校正学习规则的学习算法。可以将偏置作为神经元权值向量的第一个分量加到权值向量中,也可以设其值为0 输入向量和权值向量可分别写成如下的形式:令上式等于零,可得到在维空间的单层感知器的判别超平面。 T121,mnxnxnxn X T12,mnb nw nwnwnw2022-6-
4、162.2.22.2.2单层感知器的学习算法单层感知器的学习算法p单层感知器学习算法单层感知器学习算法第一步,设置变量和参量。 为激活函数为激活函数, , 为网络实际输出,为网络实际输出, 为期望输出,为期望输出, 为学习为学习速率,速率, 为迭代次数,为迭代次数, 为实际输出与期望输出的误差。为实际输出与期望输出的误差。 第二步,初始化 给权值向量给权值向量 的各个分量赋一个较小的随机非零值,置的各个分量赋一个较小的随机非零值,置 第三步,输入一组样本 ,并给出 它的期望输出 。 第四步,计算实际输出:第五步,求出期望输出和实际输出求出差根据误差判断目前输出是否满足条件,一般为对所有样本误差
5、为零或者均根据误差判断目前输出是否满足条件,一般为对所有样本误差为零或者均小于预设的值,则算法结束,否则将值增加小于预设的值,则算法结束,否则将值增加1 1,并用下式调整权值:,并用下式调整权值:然后转到第三步,进入下一轮计算过程然后转到第三步,进入下一轮计算过程 f( ) ( )ny( )ndne(1)W1n 121,mnxnxnxn X( )nd0( )f( )( )miiiy nwn x n( )( )ed ny n 1w nw nd ny nx n2022-6-162.2.22.2.2单层感知器的学习算法单层感知器的学习算法p学习算法实例学习算法实例: : 构建一个神经元,它能够实现逻
6、辑与操作构建一个神经元,它能够实现逻辑与操作x1x2d000010100111逻辑逻辑“与与”真值表真值表2022-6-162.2.22.2.2单层感知器的学习算法单层感知器的学习算法p确定权值和阈值确定权值和阈值w1=w2=b=2022-6-162.2.22.2.2单层感知器的学习算法单层感知器的学习算法p设阈值为设阈值为0.60.6,初始权值均为,初始权值均为0.10.1,学习,学习率为率为0.60.6,误差值要求为,误差值要求为0 0,神经元的激活,神经元的激活函数为硬限幅函数,求权值函数为硬限幅函数,求权值w w1 1与与w w2 221(3)迭代次数迭代次数样本标号样本标号输入或权值
7、标号输入或权值标号变量变量2022-6-162022-6-16p对于样本对于样本1 1,输出神经元的输入为:,输出神经元的输入为:p输出神经元的输出为:输出神经元的输出为:001122(0)(1)(0)(1)0.1 00.1 00wxwx10001122(1)sgn(0)(1)sgn(0)(1)(0)(1)0.60TyWXbwxwx2022-6-162.2.22.2.2单层感知器的学习算法单层感知器的学习算法p权值调整权值调整p样本样本2 2与与3 3同样本同样本1 1,因输出为,因输出为0 0省略省略p对于样本对于样本4 4,输出神经元的输入为:,输出神经元的输入为:10111112(1)(
8、0)( (1)(1)0.1(1)0.1wwdyxw111122(3)(4)(3)(4)0.1 10.1 10.2wxwx 2022-6-162.2.22.2.2单层感知器的学习算法单层感知器的学习算法p输出神经元的输出为:输出神经元的输出为:p权值调整:权值调整:11111122(4)sgn(3)(4)sgn(3)(4)(3)(4)0.60TyWXbwxwx11111112(4)(3)( (4)(4)0.10.6 1 10.7(4)0.7wwdyxw 2022-6-162.2.22.2.2单层感知器的学习算法单层感知器的学习算法p此时完成一次循环过程,由于误差没有此时完成一次循环过程,由于误差
9、没有达到达到0 0,返回第,返回第2 2步继续循环,在第二次循步继续循环,在第二次循环中,前三个样本输入时因误差均为环中,前三个样本输入时因误差均为0 0,所以没有对权值进行调整,各权值仍保持所以没有对权值进行调整,各权值仍保持第一次循环的最后值,第四个样本输入时第一次循环的最后值,第四个样本输入时各参数值如下:各参数值如下:2022-6-162.2.22.2.2单层感知器的学习算法单层感知器的学习算法221122(3)(4)(3)(4)0.7 10.7 11.4wxwx 22221122(4)sgn(3)(4)sgn(3)(4)(3)(4)0.61TyWXbwxwx22111122(4)(3
10、)( (4)(4)0.70.60 10.7(4)0.7wwdyxw 2022-6-162.2.22.2.2单层感知器的学习算法单层感知器的学习算法p计算误差时,对所有的样本,计算误差时,对所有的样本,网络的输出误差均为网络的输出误差均为0 0,达到,达到预定的要求,训练结束预定的要求,训练结束2022-6-162.2.3 2.2.3 单层感知器的单层感知器的MATLABMATLAB实现实现 p MATLAB MATLAB中单层感知器常用工具函数名称中单层感知器常用工具函数名称和基本功能和基本功能 函函 数数 名名功功 能能newp()生成一个感知器生成一个感知器hardlim()硬限幅激活函数
11、硬限幅激活函数learnp()感知器的学习函数感知器的学习函数train()神经网络训练函数神经网络训练函数sim()神经网络仿真函数神经网络仿真函数mae()平均绝对误差性能函数平均绝对误差性能函数plotpv()在坐标图上绘出样本点在坐标图上绘出样本点plotpc()在已绘制的图上加分类线在已绘制的图上加分类线2022-6-162.2.3 2.2.3 单层感知器的单层感知器的MATLABMATLAB实现实现pnewpnewp()()功能:创建一个感知器神经网络的函数格式:net = newp(PR,S,TF,LF)说明:net为生成的感知机神经网络;PR为一个R2的矩阵,由R组输入向量中的
12、最大值和最小值组成;S表示神经元的个数;TF表示感知器的激活函数,缺省值为硬限幅激活函数hardlim;LF表示网络的学习函数,缺省值为learnp phardlimhardlim()()功能 硬限幅激活函数格式 A = hardlim(N) 说明 函数hardlim(N)在给定网络的输入矢量矩阵N时,返回该层的输出矢量矩阵A。当N中的元素大于等于零时,返回的值为l;否则为0。也就是说,如果网络的输入达到阈值,则硬限幅传输函数的输出为1;否则,为0。 plearnplearnp()()功能 感知机的权值和阈值学习函数 2022-6-162.2.3 2.2.3 单层感知器的单层感知器的MATLA
13、BMATLAB实现实现ptrain()train()功能 神经网络训练函数格式 net,tr,Y,E,Pf,Af = train(NET,P,T,Pi,Ai,VV,TV)说明 net为训练后的网络;tr为训练记录;Y为网络输出矢量;E为误差矢量;Pf为训练终止时的输入延迟状态;Af为训练终止时的层延迟状态;NET为训练前的网络;P为网络的输入向量矩阵;T表示网络的目标矩阵,缺省值为0;Pi表示初始输入延时,缺省值为0;Ai表示初始的层延时,缺省值为0; VV为验证矢量(可省略);TV为测试矢量(可省略)。网络训练函数是一种通用的学习函数,训练函数重复地把一组输入向量应用到一个网络上,每次都更新
14、网络,直到达到了某种准则,停止准则可能是达到最大的学习步数、最小的误差梯度或误差目标等。2022-6-162.2.3 2.2.3 单层感知器的单层感知器的MATLABMATLAB实现实现psimsim()()功能 对网络进行仿真格式 (1) Y(1) Y,PfPf,AfAf,E E,perf = sim(NETperf = sim(NET,P P,PiPi,AiAi,T) T) (2) Y(2) Y,PfPf,AfAf,E E,perf = sim(NETperf = sim(NET,Q TSQ TS,PiPi,AiAi,T) T) (3) Y(3) Y,PfPf,AfAf,E E,perf
15、= sim(NETperf = sim(NET,Q Q,PiPi,AiAi,T)T)说明 Y为网络的输出;Pf表示最终的输入延时状态;Af表示最终的层延时状态;E为实际输出与目标矢量之间的误差;perf为网络的性能值;NET为要测试的网络对象;P为网络的输入向量矩阵;Pi为初始的输入延时状态(可省略);Ai为初始的层延时状态(可省略);T为目标矢量(可省略)。式(1)、(2)用于没有输入的网络,其中Q为批处理数据的个数,TS为网络仿真的时间步数。2022-6-162.2.3 2.2.3 单层感知器的单层感知器的MATLABMATLAB实现实现p maemae()()功能 平均绝对误差性能函数格
16、式 perf=mae(E,w,pp) 说明 perf表示平均绝对误差和, E为误差矩阵或向量(网络的目标向量与输出向量之差), w为所有权值和偏值向量(可忽略), pp为性能参数(可忽略)。 2022-6-162.2.3 2.2.3 单层感知器的单层感知器的MATLABMATLAB实现实现p plotpvplotpv()()功能 绘制样本点的函数格式 (1) plotpv(P,T) (2) plotpv(P,T,V)说明 P定义了n个2或3维的样本,是一个2n维或3n维的矩阵;T表示各样本点的类别,是一个n维的向量;V=x_min x_max y_min y_max,为一设置绘图坐标值范围的向
17、量。利用plotpv()函数可在坐标图中绘出给定的样本点及其类别,不同的类别使用不同的符号。如果T只含一元矢量,则目标为0的输入矢量在坐标图中用符号o表示: 目标为1的输入矢量在坐标图中用符号+表示。如果T含二元矢量,则输入矢量在坐标图中所采用的符号分别如下:0 0用o表示;0 1用+表示:1 0用*表示;1 1用表示。 2022-6-162.2.3 2.2.3 单层感知器的单层感知器的MATLABMATLAB实现实现pplotpcplotpc()()功能 在存在的图上绘制出感知器的分类线函数格式 (1) plotpc(W,B) (2) plotpc(W,B,H)说明 硬特性神经元可将输入空间
18、用一条直线(如果神经元有两个输入),或用一个平面(如果神经元有三个输入),或用一个超平面(如果神经元有三个以上输入)分成两个区域。plotpc(W,B)对含权矩阵w和偏置矢量b的硬特性神经元的两个或三个输入画一个分类线。这一函数返回分类线的句柄以便以后调用。plotpc(W,B,H)包含从前的一次调用中返回的句柄。它在画新分类线之前,删除旧线。2022-6-162.2.3 2.2.3 单层感知器的单层感知器的MATLABMATLAB实现实现p使用使用MATLABMATLAB实现神经网络的步骤如下:实现神经网络的步骤如下:第一步 根据应用创建一个神经网络;第二步 设定神经网络的训练参数,利用给定
19、样本对创建的神经网络进行训练;第三步 输入测试数据,测试训练好的神经网络的性能。p例例2-12-1:见:见神经网络实用教程神经网络实用教程第第2222页页 2022-6-162.2.3 2.2.3 单层感知器的单层感知器的MATLABMATLAB实现实现P= -0.4 -0.5 0.6; 0.9 0 0.1; P= -0.4 -0.5 0.6; 0.9 0 0.1; % %给定训练样本数据给定训练样本数据T= 1 1 0; T= 1 1 0; % %给定样本数据所对应的类别,用给定样本数据所对应的类别,用1 1和和0 0来表示两种类别来表示两种类别% %创建一个有两个输入、样本数据的取值范围都
20、在创建一个有两个输入、样本数据的取值范围都在-1-1,11之间,并且之间,并且% %网络只有一个神经元的感知器神经网络网络只有一个神经元的感知器神经网络net=newp(-1 1;-1 1,1);net=newp(-1 1;-1 1,1);net.trainParam.epochsnet.trainParam.epochs = 20; = 20; % %设置网络的最大训练次数为设置网络的最大训练次数为2020次次net=train(net,P,Tnet=train(net,P,T); ); % %使用训练函数对创建的网络进行训练使用训练函数对创建的网络进行训练Y=sim(net,PY=sim(
21、net,P) ) % %对训练后的网络进行仿真对训练后的网络进行仿真E1=mae(YE1=mae(Y-T) -T) % %计算网络的平均绝对误差,表示网络错误分类计算网络的平均绝对误差,表示网络错误分类Q=0.6 0.9 -0.1; -0.1 -0.5 0.5; Q=0.6 0.9 -0.1; -0.1 -0.5 0.5; % %检测训练好的神经网络的性能检测训练好的神经网络的性能Y1=sim(net,QY1=sim(net,Q) ) % %对网络进行仿真,仿真输出即为分类的结果对网络进行仿真,仿真输出即为分类的结果figure; figure; % %创建一个新的绘图窗口创建一个新的绘图窗口
22、plotpv(Q,Y1); plotpv(Q,Y1); % %在坐标图中绘制测试数据在坐标图中绘制测试数据plotpc(net.iw1,net.b1) plotpc(net.iw1,net.b1) % %在坐标图中绘制分类线在坐标图中绘制分类线2022-6-162.2.3 2.2.3 单层感知器的单层感知器的MATLABMATLAB实现实现p例例2-12-1运行后在命令行窗口中得到的结果如下:运行后在命令行窗口中得到的结果如下: TRAINC, Epoch 0/20 TRAINC, Epoch 0/20% %使用使用TRAINCTRAINC作为神经网络的训练函数,第作为神经网络的训练函数,第0
23、 0次训练,最次训练,最% %大训练次数为大训练次数为2020TRAINC, Epoch 3/20TRAINC, Epoch 3/20% %达到目标误差要求,结束训练达到目标误差要求,结束训练TRAINC, Performance goal met.TRAINC, Performance goal met.Y =Y = 1 1 0 1 1 0E1 =E1 = 0 0Y1 =Y1 = 0 0 1 0 0 1 2022-6-162.2.3 2.2.3 单层感知器的单层感知器的MATLABMATLAB实现实现p例例2-12-1训练误差曲线训练误差曲线 2022-6-162.2.3 2.2.3 单层感
24、知器的单层感知器的MATLABMATLAB实现实现p例例2-12-1训练后的分类线训练后的分类线 2022-6-162.2.4 2.2.4 多层感知机多层感知机 p单层感知器的缺点是只能解决线性可分的分类单层感知器的缺点是只能解决线性可分的分类模式问题模式问题p采用多层网络结构可以增强网络的分类能力,采用多层网络结构可以增强网络的分类能力,即在输入层与输出层之间增加一个隐含层,从即在输入层与输出层之间增加一个隐含层,从而构成多层感知器而构成多层感知器(Multilayer Perceprons(Multilayer Perceprons ,MLP)MLP)。p由输入层、隐含层由输入层、隐含层( (可以是一层或者多层可以是一层或者多层) )和输和输出层构成的神经网络称为多层前向神经网络。出层构成的神经网络称为多层前向神经网络。 2022-6-162.2.4 2.2.4 多层感知机多层感知机 p多层感知器的拓扑结构多层感知器的拓扑结构 2022-6-162.2.4 2.2.4 多层感知机多层感知机p多层感知器的特点多层感知器的特点含有一层或多层隐单元,从输入模式中获得了更多有用的信息,使网络可以完成更复杂的任务。每个神经元的激活函数采用可微的函数sigmoidsigmoid函数函数多个突触使得网络更具连通性 具有独特的学习算法 BPBP算法算法