遥测遥控-03课件.ppt

上传人(卖家):三亚风情 文档编号:3008385 上传时间:2022-06-21 格式:PPT 页数:189 大小:6.09MB
下载 相关 举报
遥测遥控-03课件.ppt_第1页
第1页 / 共189页
遥测遥控-03课件.ppt_第2页
第2页 / 共189页
遥测遥控-03课件.ppt_第3页
第3页 / 共189页
遥测遥控-03课件.ppt_第4页
第4页 / 共189页
遥测遥控-03课件.ppt_第5页
第5页 / 共189页
点击查看更多>>
资源描述

1、雷达原理简介1.1 雷雷 达达 的的 任任 务务 1.1.1 雷达回波中的可用信息雷达回波中的可用信息 当雷达探测到目标后, 就要从目标回波中提取有关信息: 可对目标的距离和空间角度定位, 目标位置的变化率可由其距离和角度随时间变化的规律中得到,并由此建立对目标跟踪; 雷达的测量如果能在一维或多维上有足够的分辨力, 则可得到目标尺寸和形状的信息; 采用不同的极化,可测量目标形状的对称性。原理上,雷达还可测定目标的表面粗糙度及介电特性等。 目标在空间、陆地或海面上的位置, 可以用多种坐标系来表示。最常见的是直角坐标系, 即空间任一点目标P的位置可用x、 y、z三个坐标值来决定。在雷达应用中, 测

2、定目标坐标常采用极(球)坐标系统, 如图1.1所示。图中, 空间任一目标P所在位置可用下列三个坐标确定: (1) 目标的斜距R: 雷达到目标的直线距离OP; (2) 方位角:目标斜距R在水平面上的投影OB与某一起始方向(正北、 正南或其它参考方向)在水平面上的夹角。 图1.1 用极(球)坐标系统表示目标位置目标PHRBDaO正北雷达 (3) 仰角:斜距R与它在水平面上的投影OB在铅垂面上的夹角, 有时也称为倾角或高低角。 如需要知道目标的高度和水平距离, 那么利用圆柱坐标系统就比较方便。在这种系统中, 目标的位置由以下三个坐标来确定: 水平距离D,方位角,高度H。 这两种坐标系统之间的关系如下

3、:D=R cos, H=Rsin,= 上述这些关系仅在目标的距离不太远时是正确的。当距离较远时, 由于地面的弯曲, 必须作适当的修改。 图1-2 雷达的原理及其基本组成 目标发射机接收机显示器发射的电磁波接收的电磁波信号处理机天线收发转换开关噪声R 由雷达发射机产生的电磁能, 经收发开关后传输给天线, 再由天线将此电磁能定向辐射于大气中。电磁能在大气中以光速(约3108m/s)传播, 如果目标恰好位于定向天线的波束内, 则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射, 其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后, 就经传输线和收发开关馈给接收机。接收机将

4、这微弱信号放大并经信号处理后即可获取所需信息, 并将结果送至终端显示。 1. 目标斜距的测量目标斜距的测量2R=ctr 或 2rctR 式中, R为目标到雷达站的单程距离, 单位为m; tr为电磁波往返于目标与雷达之间的时间间隔, 单位为s; c为光速,c=3108m/s。 由于电磁波传播的速度很快, 雷达技术常用的时间单位为s, 回波脉冲滞后于发射脉冲为一个微秒时, 所对应的目标斜距离R为 kmmtcRr15. 01502 能测量目标距离是雷达的一个突出优点, 测距的精度和分辨力与发射信号带宽(或处理后的脉冲宽度)有关。脉冲越窄, 性能越好。 图1.3 雷达测距发射脉冲回波噪声trtrtt

5、2. 目标角位置的测量目标角位置的测量 目标角位置指方位角或仰角, 在雷达技术中测量这两个角位置基本上都是利用天线的方向性来实现的。雷达天线将电磁能量汇集在窄波束内, 当天线波束轴对准目标时, 回波信号最强, 如图1.4实线所示。当目标偏离天线波束轴时回波信号减弱, 如图上虚线所示。根据接收回波最强时的天线波束指向, 就可确定目标的方向, 这就是角坐标测量的基本原理。天线波束指向实际上也是辐射波前的方向。 图1.4 角坐标测量 目标O 3. 相对速度的测量相对速度的测量 有些雷达除确定目标的位置外, 还需测定运动目标的相对速度, 例如测量飞机或导弹飞行时的速度。当目标与雷达站之间存在相对速度时

6、, 接收到回波信号的载频相对于发射信号的载频产生一个频移, 这个频移在物理学上称为多卜勒频移, 它的数值为 rdvf2式中, fd为多卜勒频移,单位为Hz; vr为雷达与目标之间的径向速度, 单位为m/s; 为载波波长,单位为m。 当目标向着雷达站运动时, vr0, 回波载频提高; 反之vr 0, 回波载频降低。雷达只要能够测量出回波信号的多卜勒频移fd, 就可以确定目标与雷达站之间的相对速度。 径向速度也可以用距离的变化率来求得, 此时精度不高但不会产生模糊。无论是用距离变化率或用多卜勒频移来测量速度, 都需要时间。观测时间愈长,则速度测量精度愈高。 多卜勒频移除用作测速外, 更广泛的是应用

7、于动目标显示(MTI)、脉冲多卜勒(PD)等雷达中,以区分运动目标回波和杂波。 4. 目标尺寸和形状目标尺寸和形状 如果雷达测量具有足够高的分辨力, 就可以提供目标尺寸的测量。由于许多目标的尺寸在数十米量级, 因而分辨能力应为数米或更小。目前雷达的分辨力在距离维已能达到, 但在通常作用距离下切向距离(RQ)维的分辨力还远达不到, 增加天线的实际孔径来解决此问题是不现实的。然而当雷达和目标的各个部分有相对运动时, 就可以利用多卜勒频率域的分辨力来获得切向距离维的分辨力。例如,装于飞机和宇宙飞船上的SAR(综合孔径)雷达, 与目标的相对运动是由雷达的运动产生的。 高分辨力雷达可以获得目标在距离和切

8、向距离方向的轮廓(雷达成像)。 此外, 比较目标对不同极化波(例如正交极化等)的散射场, 就可以提供目标形状不对称性的量度。复杂目标的回波振幅随着时间会变化, 例如,螺旋桨的转动和喷气发动机的转动将使回波振幅的调制各具特点, 可经过谱分析检测到。这些信息为目标识别提供了相应的基础。 1.1.2 雷达探测能力雷达探测能力基本雷达方程基本雷达方程 设雷达发射机功率为Pt,当用各向均匀辐射的天线发射时, 距雷达R远处任一点的功率密度等于功率被假想的球面积4R2所除, 即 1S214 RPSt实际雷达总是使用定向天线将发射机功率集中辐射于某些方向上。天线增益G用来表示相对于各向同性天线, 实际天线在辐

9、射方向上功率增加的倍数。 因此当发射天线增益为G时, 距雷达R处目标所照射到的功率密度为 214 RGPSt目标截获了一部分照射功率并将它们重新辐射于不同的方向。 用雷达截面积来表示被目标截获入射功率后再次辐射回雷达处功率的大小, 或用下式表示在雷达处的回波信号功率密度: 22212444RRGPRSSt的大小随具体目标而异, 它可以表示目标被雷达“看见”的尺寸。雷达接收天线只收集了回波功率的一部分, 设天线的有效接收面积为Ae, 则雷达收到的回波功率Pr为 422)4(RGAPSAPeter当接收到的回波功率Pr等于最小可检测信号Smin时, 雷达达到其最大作用距离Rmax, 超过这个距离后

10、, 就不能有效地检测到目标。 4/1min21max)4(SGAPRe1.2 雷达的基本组成雷达的基本组成 图1.5 脉冲雷达基本组成框图 调制器电源收发开关高频和混频激励器中放同步器信号处理高放激励和同步微波显示器底座和伺服发射机操作员天线接收机1.3 雷达的工作频率雷达的工作频率 按照雷达的工作原理, 不论发射波的频率如何, 只要是通过辐射电磁能量和利用从目标反射回来的回波, 以便对目标探测和定位, 都属于雷达系统工作的范畴。常用的雷达工作频率范围为22035 000MHz(220MHz35GHz), 实际上各类雷达工作的频率在两头都超出了上述范围。 例如天波超视距(OTH)雷达的工作频率

11、为4MHz或5MHz, 而地波超视距的工作频率则低到2MHz。 在频谱的另一端, 毫米波雷达可以工作到94 GHz, 激光(Laser)雷达工作于更高的频率。工作频率不同的雷达在工程实现时差别很大。 雷达的工作频率和整个电磁波频谱示于图1.6, 实际上绝大部分雷达工作于200 MHz至10 000MHz频段。由于70年代中制成能产生毫米波的大功率管, 毫米波雷达已获得试制和应用。 目前在雷达技术领域里常用频段的名称,用L、S、C、X等英文字母来命名。这是在第二次世界大战中一些国家为了保密而采用的, 以后就一直延用下来, 我国也经常采用。 图1.6 雷达频率和电磁波频谱 甚低频(超长波)低频(长

12、波)中频(中波)高频(短波)甚高频(超短波)特高频(分米波)超高频(厘米波)极高频(毫米波)亚毫米波100 km10 km1 km100 m10 m1 m10 cm1 cm1 mm0.1 mm雷达频率广播段红外线音频视频微波段频率3 kHz30 kHz300 kHz3 MHz30 MHz300 MHz3 GHz30 GHz300 GHz3000 GHz波长表表1.1 雷达频段和对应的频率雷达频段和对应的频率 22 cm为中心的2025 cm(S代表10 cm为中心, 相应地, C代表5cm, X代表3 cm, Ku代表2.2 cm, Ka代表8 mm等)。表中还列出国际电信联盟分配给雷达的具体

13、波段, 例如, L波段包括的频率范围应是1000 MHz到2000MHz, 而L波段雷达的工作频率却被约束在1215MHz到1400MHz的范围。 1.4 雷达的应用和发展雷达的应用和发展 1.4.1 应用情况应用情况 军用雷达按战术来分可有下列主要类型: 1) 预警雷达(超远程雷达) 它的主要任务是发现洲际导弹, 以便及早发出警报。它的特点是作用距离远达数千公里, 至于测定坐标的精确度和分辨力是次要的。目前应用预警雷达不但能发现导弹, 而且可用以发现洲际战略轰炸机。 2) 搜索和警戒雷达 其任务是发现飞机, 一般作用距离在400 km以上, 有的可达600 km。对于测定坐标的精确度、分辨力

14、要求不高。 对于担当保卫重点城市或建筑物任务的中程警戒雷达要求有方位360的搜索空城。 3) 引导指挥雷达(监视雷达) 这种雷达用于对歼击机的引导和指挥作战, 民用的机场调度雷达亦属这一类。其特殊要求是: (1)对多批次目标能同时检测; (2)测定目标的三个坐标, 要求测量目标的精确度和分辨力较高, 特别是目标间的相对位置数据的精度要求较高。 4) 火控雷达 其任务是控制火炮(或地空导弹)对空中目标进行瞄准攻击, 因此要求它能够连续而准确地测定目标的坐标, 并迅速地将射击数据传递给火炮(或地空导弹)。这类雷达的作用距离较小, 一般只有几十公里, 但测量的精度要求很高。 5) 制导雷达 它和火控

15、雷达同属精密跟踪雷达, 不同的是制导雷达对付的是飞机和导弹, 在测定它们的运动轨迹的同时, 再控制导弹去攻击目标。制导雷达要求能同时跟踪多个目标, 并对分辨力要求较高。这类雷达天线的扫描方式往往有其特点, 并随制导体制而异。 6) 战场监视雷达 这类雷达用于发现坦克、 军用车辆、 人和其它在战场上的运动目标。 7) 机载雷达 这类雷达除机载预警雷达外, 主要有下列数种类型: (1) 机载截击雷达。当歼击机按照地面指挥所命令, 接近敌机并进入有利空域时, 就利用装在机上的截击雷达, 准确地测量敌机的位置, 以便进行攻击。 它要求测量目标的精确度和分辨率高。 (2) 机载护尾雷达。 它用来发现和指

16、示机尾后面一定距离内有无敌机。这种雷达结构比较简单, 不要求测定目标的准确位置, 作用距离也不远。 (3) 机载导航雷达。它装在飞机或舰船上,用以显示地面或港湾图像, 以便在黑夜和大雨、 浓雾情况下, 飞机和舰船能正确航行。 这种雷达要求分辨力较高。 (4) 机载火控雷达。20世纪70年代后的战斗机上火控系统的雷达往往是多功能的。它能空对空搜索和截获目标,空对空制导导弹,空对空精密测距和控制机炮射击,空对地观察地形和引导轰炸,进行敌我识别和导航信标的识别, 有的还兼有地形跟随和回避的作用, 一部雷达往往具有七八部雷达的功能。 对于机载雷达共同的要求是体积小、重量轻、工作可靠性高。 8) 无线电

17、测高仪 它装置在飞机上。这是一种连续波调频雷达, 用来测量飞机离开地面或海面的高度。 9) 雷达引信 这是装置在炮弹或导弹头上的一种小型雷达, 用来测量弹头附近有无目标, 当距离缩小到弹片足以击伤目标的瞬间, 使炮弹(或导弹头)爆炸, 提 高了击中目标的命中率。 在民用雷达方面, 举出以下一些类型和应用: 1) 气象雷达 这是观察气象的雷达, 用来测量暴风雨和云层的位置及其移动路线。 2) 航行管制(空中交通)雷达 在现代航空飞行运输体系中, 对于机场周围及航路上的飞机, 都要实施严格的管制。 航行管制雷达兼有警戒雷达和引导雷达的作用, 故有时也称为机场监视雷达, 它和二次雷达配合起来应用。

18、二次雷达地面设备发射询问信号, 机上接到信号后, 用编码的形式, 发出一个回答信号, 地面收到后在航行管制雷达显示器上显示。这一雷达系统可以鉴定空中目标的高度、速度和属性, 用以识别目标。 3) 宇宙航行中用雷达 这种雷达用来控制飞船的交会和对接, 以及在月球上的着陆。某些地面上的雷达用来探测和跟踪人造卫星。 4) 遥感设备 安放在卫星或飞机上的某种雷达, 可以作为微波遥感设备。 它主要感受地球物理方面的信息, 由于具有二维高分辨力而可对地形、 地貌成像。 雷达遥感也参与地球资源的勘探, 其中包括对海的情况、 水资源、冰覆盖层、 农业森林、 地质结构及环境污染等进行测量和地图描绘。 也曾利用此

19、类雷达来探测月亮和行星(雷达天文学)。 此外,在飞机导航, 航道探测(用以保证航行安全), 公路上车速测量等方面, 雷达也在发挥其积极作用。 为了满足多种用途不同的要求, 已研制了各雷达。 例如, 按照雷达信号的形式分类, 可以分为以下几类: 1) 脉冲雷达 此类雷达发射的波形是矩形脉冲, 按一定的或交错的重复周期工作, 这是目前使用最广的。 2) 连续波雷达 此类雷达发射连续的正弦波, 主要用来测量目标的速度。如需同时测量目标的距离, 则往往需对发射信号进行调制, 例如,对连续的正弦信号进行周期性的频率调制。 3) 脉冲压缩雷达 此类雷达发射宽的脉冲波, 在接收机中对收到的回波信号加以压缩处

20、理, 以便得到窄脉冲。目前实现脉冲压缩主要有两种。 线性调频脉冲压缩处理和相位编码脉冲压缩处理。 脉冲压缩能解决距离分辨力和作用距离之间的矛盾。20世纪70年代研制的新型雷达绝大部分采用脉冲压缩的体制。 此外,还有脉冲多卜勒雷达、噪声雷达、频率捷变雷达等。 也可以按其它标准对雷达进行分类, 例如:#; (1) 按角跟踪方式分, 有单脉冲雷达、 圆锥扫描雷达、 隐蔽锥扫雷达等。 (2) 按测量目标的参量分, 有测高雷达、 两坐标雷达、 三坐标雷达、测速雷达、目标识别雷达等。 (3) 按信号处理方式分, 有各种分集雷达(频率分集, 极化分集等等)、相参或非相参积累雷达、 动目标显示雷达、合成孔径雷

21、达等。 (4) 按天线扫描方法分, 有机械扫描雷达、 相控阵雷达、 频扫雷达等。 2.1 雷达发射机的任务和基本组成雷达发射机的任务和基本组成 雷达是利用物体反射电磁波的特性来发现目标并确定目标雷达是利用物体反射电磁波的特性来发现目标并确定目标的距离、方位、高度和速度等参数的。因此的距离、方位、高度和速度等参数的。因此, 雷达工作时要求雷达工作时要求发射一种特定的大功率无线电信号。发射机在雷达中就是起这发射一种特定的大功率无线电信号。发射机在雷达中就是起这一作用的一作用的, 也就是说也就是说, 它为雷达提供一个载波受到调制的大功率它为雷达提供一个载波受到调制的大功率射频信号射频信号, 经馈线和

22、收发开关由天线辐射出去。经馈线和收发开关由天线辐射出去。 2.2 雷达发射机的主要质量指标雷达发射机的主要质量指标 1. 工作频率或波段工作频率或波段 雷达的工作频率或波段是按照雷达的用途确定的。为了提高雷达的工作频率或波段是按照雷达的用途确定的。为了提高雷达系统的工作性能和抗干扰能力雷达系统的工作性能和抗干扰能力, 有时还要求它能在几个频率有时还要求它能在几个频率上跳变工作或同时工作。工作频率或波段的不同对发射机的设上跳变工作或同时工作。工作频率或波段的不同对发射机的设计影响很大计影响很大, 它首先牵涉到发射管种类的选择它首先牵涉到发射管种类的选择, 例如目前在例如目前在1000MHz以下主

23、要采用微波三、四极管以下主要采用微波三、四极管, 在在1 000 MHz以上则有以上则有多腔磁控管、多腔磁控管、 大功率速调管、行波管以及前向波管等。大功率速调管、行波管以及前向波管等。 2. 输出功率输出功率 发射机的输出功率直接影响雷达的威力和抗干扰能力。发射机的输出功率直接影响雷达的威力和抗干扰能力。 通通常规定发射机送至天线输入端的功率为发射机的输出功率。常规定发射机送至天线输入端的功率为发射机的输出功率。 有有时为了测量方便时为了测量方便, 也可以规定在指定负载上也可以规定在指定负载上(馈线上一定的电压馈线上一定的电压驻波比驻波比)的功率为发射机的输出功率。如果是波段工作的发射的功率

24、为发射机的输出功率。如果是波段工作的发射机,则还应规定在整个波段中输出功率的最低值机,则还应规定在整个波段中输出功率的最低值, 或者规定在或者规定在波段内输出功率的变化不得大于多少分贝。波段内输出功率的变化不得大于多少分贝。 脉冲雷达发射机的输出功率又可分为峰值功率脉冲雷达发射机的输出功率又可分为峰值功率Pt和平均功和平均功率率Pav。Pt是指脉冲期间射频振荡的平均功率是指脉冲期间射频振荡的平均功率(注意不要与射频正注意不要与射频正弦振荡的最大瞬功率相混淆弦振荡的最大瞬功率相混淆)。Pav是指脉冲重复周期内输出功是指脉冲重复周期内输出功率的平均值。如果发射波形是简单的矩形脉冲列率的平均值。如果

25、发射波形是简单的矩形脉冲列, 脉冲宽度为脉冲宽度为, 脉冲重复周期为脉冲重复周期为Tr, 则有则有 rtrtavfPTPP式中的式中的fr=1/Tr是脉冲重复频率。是脉冲重复频率。/Tr=fr称作雷达的工作比称作雷达的工作比D。 常规的脉冲雷达工作比的典型值为常规的脉冲雷达工作比的典型值为D=0.001, 但脉冲多卜勒雷达但脉冲多卜勒雷达的工作比可达的工作比可达10-2数量级数量级, 甚至达甚至达10-1数量级。显然数量级。显然, 连续波雷达连续波雷达的的D=1。 4. 信号形式信号形式(调制形式调制形式) 表表 2.1 雷达的常用信号形式雷达的常用信号形式 图图 2.4 三种典型雷达信号和调

26、制波形三种典型雷达信号和调制波形 Trtt(a)Tr(b)0(c)tttt 5 . 信号的稳定度或频谱纯度信号的稳定度或频谱纯度 信号的稳定度是指信号的各项参数信号的稳定度是指信号的各项参数, 例如信号的振幅、例如信号的振幅、 频率频率(或相位或相位)、 脉冲宽度及脉冲重复频率等是否随时间作不应有的脉冲宽度及脉冲重复频率等是否随时间作不应有的变化。后面将会分析到变化。后面将会分析到, 雷达信号的任何不稳定都会给雷达整机雷达信号的任何不稳定都会给雷达整机性能带来不利的影响。例如对动目标显示雷达性能带来不利的影响。例如对动目标显示雷达, 它会造成不应有它会造成不应有的系统对消剩余的系统对消剩余,

27、在脉冲压缩系统中会造成目标的距离旁瓣以及在脉冲压缩系统中会造成目标的距离旁瓣以及在脉冲多卜勒系统中会造成假目标等。信号参数的不稳定可分在脉冲多卜勒系统中会造成假目标等。信号参数的不稳定可分为规律性的与随机性的两类为规律性的与随机性的两类, 规律性的不稳定往往是由电源滤波规律性的不稳定往往是由电源滤波不良、机械震动等原因引起的不良、机械震动等原因引起的, 而随机性的不稳定则是由发射管而随机性的不稳定则是由发射管的噪声和调制脉冲的随机起伏所引起的。的噪声和调制脉冲的随机起伏所引起的。 图图 2.5 矩形射频脉冲列的理想频谱矩形射频脉冲列的理想频谱 相对振幅Tr1fsinff01f0f01图图 2.

28、6 实际发射信号的频谱实际发射信号的频谱 204060801000123信号的第一谱线离 散 型寄生输出分布型寄生输出fm / kHz /(dB/Hz)043.1 雷达接收机的组成和主要质量指标雷达接收机的组成和主要质量指标 3.1.1 超外差式雷达接收机的组成超外差式雷达接收机的组成 超外差式雷达接收机的简化方框图如图超外差式雷达接收机的简化方框图如图3.1所示。所示。 它的主要它的主要组成部分是组成部分是: (1) 高频部分高频部分, 又称为接收机又称为接收机“前端前端”, 包括接收机保护器、包括接收机保护器、低噪声高频放大器、混频器和本机振荡器低噪声高频放大器、混频器和本机振荡器; (2

29、) 中频放大器中频放大器, 包括匹配滤波器包括匹配滤波器; (3) 检波器和视频放大器。检波器和视频放大器。 图图3.1 超外差式雷达接收机简化方框图超外差式雷达接收机简化方框图 接收机保护器低噪声高频放大器混频器中频放大器(匹配滤波器)检波器视 频放大器至终端设备本振高 频 部 分高频输入 从天线接收的高频回波通过收发开关加至接收机保护器从天线接收的高频回波通过收发开关加至接收机保护器, 一一般是经过低噪声高频放大器后再送到混频器。在混频器中般是经过低噪声高频放大器后再送到混频器。在混频器中, 高频高频回波脉冲信号与本机振荡器的等幅高频电压混频回波脉冲信号与本机振荡器的等幅高频电压混频, 将

30、信号频率降将信号频率降为中频为中频(IF), 再由多级中频放大器对中频脉冲信号进行放大和匹再由多级中频放大器对中频脉冲信号进行放大和匹配滤波配滤波, 以获得最大的输出信噪比以获得最大的输出信噪比, 最后经过检波器和视频放大最后经过检波器和视频放大后送至终端处理设备。后送至终端处理设备。 更为通用的超外差式雷达接收机的组成方框图如图更为通用的超外差式雷达接收机的组成方框图如图3.2所示。所示。 它适用于收、发公用天线的各种脉冲雷达系统。实际的雷达接它适用于收、发公用天线的各种脉冲雷达系统。实际的雷达接收机可以不收机可以不(而且通常也不而且通常也不)包括图中所示的全部部件包括图中所示的全部部件。

31、图图3.2 超外差式雷达接收机的一般方框图超外差式雷达接收机的一般方框图 收发开关低噪声高频放大器接收机保护器混 频 器中频放大器中频增益衰减中频滤波器线性放大器包络检波器同频检波器对数放大器限幅放大器相干本振相位检波器发射机稳定本振近程增益控制(STC)AGC视 频 放 大 器天线uI(t)uQ(t)cossin903.1.2 超外差式雷达接收机的主要质量指标超外差式雷达接收机的主要质量指标 1. 灵敏度灵敏度 灵敏度表示接收机接收微弱信号的能力。能接收的信号越灵敏度表示接收机接收微弱信号的能力。能接收的信号越微弱微弱, 则接收机的灵敏度越高则接收机的灵敏度越高, 因而雷达的作用距离就越远。

32、因而雷达的作用距离就越远。 雷达接收机的灵敏度通常用最小可检测信号功率雷达接收机的灵敏度通常用最小可检测信号功率Si min来表来表示。示。 当接收机的输入信号功率达到当接收机的输入信号功率达到Si min时时, 接收机就能正常接接收机就能正常接收而在输出端检测出这一信号。如果信号功率低于此值收而在输出端检测出这一信号。如果信号功率低于此值, 信号将信号将被淹没在噪声干扰之中被淹没在噪声干扰之中, 不能被可靠地检测出来不能被可靠地检测出来, 如图如图3.3所示。所示。由于雷达接收机的灵敏度受噪声电平的限制由于雷达接收机的灵敏度受噪声电平的限制, 因此要想提高它的因此要想提高它的灵敏度灵敏度,

33、就必须尽力减小噪声电平就必须尽力减小噪声电平, 同时还应使接收机有足够的同时还应使接收机有足够的增益。增益。 图图3.3 显示器上所见到的信号与噪声显示器上所见到的信号与噪声发射脉冲噪声被噪声淹没的信号 2. 接收机的工作频带宽度接收机的工作频带宽度 接收机的工作频带宽度表示接收机的瞬时工作频率范围。接收机的工作频带宽度表示接收机的瞬时工作频率范围。 在复杂的电子对抗和干扰环境中在复杂的电子对抗和干扰环境中, 要求雷达发射机和接收机具有要求雷达发射机和接收机具有较宽的工作带宽较宽的工作带宽, 例如频率捷变雷达要求接收机的工作频带宽度例如频率捷变雷达要求接收机的工作频带宽度为为(1020)%。接

34、收机的工作频带宽度主要决定于高频部件。接收机的工作频带宽度主要决定于高频部件(馈线馈线系统、高频放大器和本机振荡器系统、高频放大器和本机振荡器)的性能。的性能。 需要指出需要指出, 接收机的接收机的工作频带较宽时工作频带较宽时, 必须选择较高的中频必须选择较高的中频, 以减少混频器输出的寄以减少混频器输出的寄生响应对接收机性能的影响。生响应对接收机性能的影响。 3. 动态范围动态范围 动态范围表示接收机能够正常工作所容许的输入信号强度动态范围表示接收机能够正常工作所容许的输入信号强度变化的范围。最小输入信号强度通常取为最小可检测信号功率变化的范围。最小输入信号强度通常取为最小可检测信号功率Si

35、 min, 允许最大的输入信号强度则根据正常工作的要求而定。允许最大的输入信号强度则根据正常工作的要求而定。 当输入信号太强时当输入信号太强时, 接收机将发生饱和而失去放大作用接收机将发生饱和而失去放大作用, 这种现这种现象称为过载。使接收机开始出现过载时的输入功率与最小可检象称为过载。使接收机开始出现过载时的输入功率与最小可检测功率之比测功率之比, 叫做动态范围。为了保证对强弱信号均能正常接收叫做动态范围。为了保证对强弱信号均能正常接收, 要求动态范围大要求动态范围大, 就需要采取一定措施就需要采取一定措施, 例如采用对数放大器、例如采用对数放大器、 各种增益控制电路等抗干扰措施。各种增益控

36、制电路等抗干扰措施。 4. 中频的选择和滤波特性中频的选择和滤波特性 接收机中频的选择和滤波特性是接收机的重要质量指标之接收机中频的选择和滤波特性是接收机的重要质量指标之一。一。 中频的选择与发射波形的特性、中频的选择与发射波形的特性、 接收机的工作带宽以及所接收机的工作带宽以及所能提供的高频部件和中频部件的性能有关。在现代雷达接收机能提供的高频部件和中频部件的性能有关。在现代雷达接收机中中, 中频的选择可以从中频的选择可以从30 MHz到到4GHz之间。当需要在中频增加之间。当需要在中频增加某些信号处理部件某些信号处理部件, 如脉冲压缩滤波器如脉冲压缩滤波器, 对数放大器和限幅器等对数放大器

37、和限幅器等时时, 从技术实现来说从技术实现来说, 中频选择在中频选择在30MHz至至500MHz更为合适。更为合适。 对于宽频带工作的接收机对于宽频带工作的接收机, 应选择较高的中频应选择较高的中频, 以便使虚假的寄以便使虚假的寄生响应减至最小。生响应减至最小。 减小接收机噪声的关键参数是中频的滤波特性减小接收机噪声的关键参数是中频的滤波特性, 如果中频滤如果中频滤波特性的带宽大于回波信号带宽波特性的带宽大于回波信号带宽, 则过多的噪声进入接收机。则过多的噪声进入接收机。 反之反之, 如果所选择的带宽比信号带宽窄如果所选择的带宽比信号带宽窄, 信号能量将会损失。这信号能量将会损失。这两种情况都

38、会使接收机输出的信噪比减小。两种情况都会使接收机输出的信噪比减小。 在白噪声在白噪声(即接收即接收机热噪声机热噪声)背景下背景下, 接收机的频率特性为接收机的频率特性为“匹配滤波器匹配滤波器”时时, 输出输出的信号噪声比最大。的信号噪声比最大。 5. 工作稳定性和频率稳定度工作稳定性和频率稳定度一般来说一般来说, 工作稳定性是指当环境条件工作稳定性是指当环境条件(例如温度、例如温度、 湿度、湿度、 机械机械振动等振动等)和电源电压发生变化时和电源电压发生变化时, 接收机的性能参数接收机的性能参数(振幅特性、振幅特性、 频率特性和相位特性等频率特性和相位特性等)受到影响的程度受到影响的程度, 希

39、望影响越小越好。希望影响越小越好。 大多数现代雷达系统需要对一串回波进行相参处理大多数现代雷达系统需要对一串回波进行相参处理, 对本机对本机振荡器的短期频率稳定度有极高的要求振荡器的短期频率稳定度有极高的要求(高达高达10-10或者更高或者更高), 因因此,必须采用频率稳定度和相位稳定度极高的本机振荡器此,必须采用频率稳定度和相位稳定度极高的本机振荡器, 即简即简称的称的“稳定本振稳定本振”。 6. 抗干扰能力抗干扰能力 在现代电子战和复杂的电磁干扰环境中在现代电子战和复杂的电磁干扰环境中, 抗有源干扰和无抗有源干扰和无源干扰是雷达系统的重要任务之一。源干扰是雷达系统的重要任务之一。 有源干扰

40、为敌方施放的各有源干扰为敌方施放的各种杂波干扰和邻近雷达的异步脉冲干扰种杂波干扰和邻近雷达的异步脉冲干扰, 无源干扰主要是指从无源干扰主要是指从海浪、雨雪、地物等反射的杂波干扰和敌机施放的箔片干扰。海浪、雨雪、地物等反射的杂波干扰和敌机施放的箔片干扰。 这些干扰严重影响对目标的正常检测这些干扰严重影响对目标的正常检测, 甚至使整个雷达系统无甚至使整个雷达系统无法工作。现代雷达接收机必须具有各种抗干扰电路。法工作。现代雷达接收机必须具有各种抗干扰电路。 当雷达系当雷达系统用频率捷变方法抗干扰时统用频率捷变方法抗干扰时, 接收机的本振应与发射机频率同接收机的本振应与发射机频率同步跳变。步跳变。 同

41、时接收机应有足够大的动态范围同时接收机应有足够大的动态范围, 以保证后面的信以保证后面的信号处理器有高的处理精度。号处理器有高的处理精度。 5.1.1 基本雷达方程基本雷达方程 5.1 雷雷 达达 方方 程程 设雷达发射功率为Pt, 雷达天线的增益为Gt, 则在自由空间工作时, 距雷达天线R远的目标处的功率密度S1为 214 RGPStt(5.1.1) 目标受到发射电磁波的照射, 因其散射特性而将产生散射回波。 散射功率的大小显然和目标所在点的发射功率密度S1以及目标的特性有关。用目标的散射截面积(其量纲是面积)来表征其散射特性。若假定目标可将接收到的功率无损耗地辐射出来, 则可得到由目标散射

42、的功率(二次辐射功率)为 2124 RGPSPtt(5.1.2) 又假设P2均匀地辐射, 则在接收天线处收到的回波功率密度为 22222)4(4RGPRPStt(5.1.3) 如果雷达接收天线的有效接收面积为Ar, 则在雷达接收处接收回波功率为Pr, 而 222)4(RAGPSAPttrr(5.1.4) 由天线理论知道, 天线增益和有效面积之间有以下关系: 24AG 式中为所用波长, 则接收回波功率可写成如下形式: 432)4(RGGPPrttr424RAAPPrttr(5.1.5) (5.1.6) 单基地脉冲雷达通常收发共用天线, 即Gt=Gr=G, At=Ar, 将此关系式代入上二式即可得

43、常用结果。 由式(5.1.4)(5.1.6)可看出, 接收的回波功率Pr反比于目标与雷达站间的距离R的四次方, 这是因为一次雷达中, 反射功率经过往返双倍的距离路程, 能量衰减很大。接收到的功率Pr必须超过最小可检测信号功率Si min, 雷达才能可靠地发现目标, 当Pr正好等于Si min时, 就可得到雷达检测该目标的最大作用距离Rmax。 因为超过这个距离, 接收的信号功率Pr进一步减小, 就不能可靠地检测到该目标。它们的关系式可以表达为 4max3224max22min)4(4RGPRAPSPtrtir(5.1.7) 或 41min322max41min22max)4(4itirtSGP

44、RSAPR(5.1.8) (5.1.9) 式(5.1.8)、(5.1.9)是雷达距离方程的两种基本形式, 它表明了作用距离Rmax和雷达参数以及目标特性间的关系。 雷达方程虽然给出了作用距离和各参数间的定量关系, 但因未考虑设备的实际损耗和环境因素, 而且方程中还有两个不可能准确预定的量: 目标有效反射面积和最小可检测信号Si min, 因此它常用来作为一个估算的公式, 考察雷达各参数对作用距离影响的程度。 雷达总是在噪声和其它干扰背景下检测目标的, 再加上复杂目标的回波信号本身也是起伏的,故接收机输出的是随机量。 雷达作用距离也不是一个确定值而是统计值, 对于某雷达来讲, 不能简单地说它的作

45、用距离是多少, 通常只在概率意义上讲, 当虚警概率(例如10-6)和发现概率(例如90%)给定时的作用距离是多大。 5.1.2 目标的雷达截面积目标的雷达截面积 (RCS) 雷达是通过目标的二次散射功率来发现目标的。为了描述目标的后向散射特性, 在雷达方程的推导过程中, 定义了“点”目标的雷达截面积, 如式(5.1.2)所示, P2=S1 P2为目标散射的总功率, S1为照射的功率密度。雷达截面积又可写为 12SP图 5.1 目标的散射特性 PRS15.2 最小可检测信号最小可检测信号 5.2.1 最小可检测信噪比最小可检测信噪比 典型的雷达接收机和信号处理框图如图5.2所示, 一般把检波器以

46、前(中频放大器输出)的部分视为线性的, 中频滤波器的特性近似匹配滤波器, 从而使中放输出端的信号噪声比达到最大。 图 5.2 接收信号处理框图 匹 配接收机检波器检波后积 累检测装置kT0BnFn检测门限o minSN DoSi min噪声系数Fn可写成 输出端信噪比输入信噪比oinNSNSF)/()/(5.2.1) 将上式整理后得到输入信号功率Si的表示式为 onnoiniNSFBkTNSNFS0(5.2.2) 根据雷达检测目标质量的要求,可确定所需要的最小输出信噪比 , 这时就得到最小可检测信号Si min为 min)/(oNSmin0minionnNSFBkTS(5.2.3) 5.2.2

47、 门限检测门限检测 图 5.3 接收机输出典型包络 电压噪声平均值时间ABC门限值 检测时门限电压的高低影响以下两种错误判断的多少: (1) 有信号而误判为没有信号(漏警); (2) 只有噪声时误判为有信号(虚警)。 应根据两种误判的影响大小来选择合适的门限。 门限检测是一种统计检测, 由于信号叠加有噪声, 所以总输出是一个随机量。在输出端根据输出振幅是否超过门限来判断有无目标存在, 可能出现以下四种情况: (1) 存在目标时, 判为有目标, 这是一种正确判断, 称为发现, 它的概率称为发现概率Pd; (2) 存在目标时, 判为无目标, 这是错误判断, 称为漏报, 它的概率称为漏报概率Pla;

48、 (3) 不存在目标时判为无目标, 称为正确不发现, 它的概率称为正确不发现概率Pan; (4) 不存在目标时判为有目标, 称为虚警, 这也是一种错误判断, 它的概率称为虚警概率Pfa; 显然四种概率存在以下关系:Pd+Pla=1, Pan+Pfa=1 每对概率只要知道其中一个就可以了。 我们下面只讨论常用的发现概率和虚警概率。 门限检测的过程可以用电子线路自动完成, 也可以由观察员观察显示器来完成。当用观察员观察时, 观察员自觉不自觉地在调整门限, 人在雷达检测过程中的作用与观察人员的责任心、熟悉程度以及当时的情况有关。例如, 如果害怕漏报目标, 就会有意地降低门限, 这就意味着虚警概率的提

49、高。 在另一种情况下, 如果观察人员担心虚报, 自然就倾向于提高门限, 这样只能把比噪声大得多的信号指示为目标, 从而丢失一些弱信号。操纵人员在雷达检测过程中的能力, 可以用试验的方法来决定, 但这种试验只是概略的。 5.2.3 检测性能和信噪比检测性能和信噪比 1. 虚警概率虚警概率Pfa 虚警是指没有信号而仅有噪声时, 噪声电平超过门限值被误认为信号的事件。噪声超过门限的概率称虚警概率。显然, 它和噪声统计特性、噪声功率以及门限电压的大小密切相关。 下面定量地分析它们之间的关系。 通常加到接收机中频滤波器(或中频放大器)上的噪声是宽带高斯噪声, 其概率密度函数由下式给出: 222exp21

50、)(vvp(5.2.8) 图 5.4 门限电平和虚警概率 0.6p (r)0.50.20.30.101234576噪声输出包络门限UT虚警概率r /0.4 2.发现概率发现概率Pd 为了讨论发现概率Pd , 必须研究信号加噪声通过接收机的情况, 然后才能计算信号加噪声电压超过门限的概率, 也就是发现概率Pd 。 下面将讨论振幅为A的正弦信号同高斯噪声一起输入到中频滤波器的情况。 设信号的频率是中频滤波器的中心频率fIf, 包络检波器的输出包络的概率密度函数为 2022222exp)(rAIArrrpd(5.2.14) 图 5.8 用概率密度函数来说明检测性能 p(r)0.60.50.40.30

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(遥测遥控-03课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|