二阶系统进行分析课件.ppt

上传人(卖家):晟晟文业 文档编号:3071179 上传时间:2022-07-02 格式:PPT 页数:119 大小:4.62MB
下载 相关 举报
二阶系统进行分析课件.ppt_第1页
第1页 / 共119页
二阶系统进行分析课件.ppt_第2页
第2页 / 共119页
二阶系统进行分析课件.ppt_第3页
第3页 / 共119页
二阶系统进行分析课件.ppt_第4页
第4页 / 共119页
二阶系统进行分析课件.ppt_第5页
第5页 / 共119页
点击查看更多>>
资源描述

1、本章主要内容时域分析法 1( ) 1( )( )r ttR ss21( )1( )( )r tttR ss 2311( )1( )( )2r tttR ss( )( )( )1r ttR s22( )sin1( )( )Ar tAttR ss ( ( ) )( ( ) )% %1 10 00 0% %( ( ) )p ph h t th hh h h(t)t时间时间tr上上 升升峰值时峰值时间间tpAB超调量超调量% =AB100%h(t)t调节时调节时间间tsh(t)t时间时间trAB超调量超调量% =AB100% ( )1( ),( )1C ssTRCR sTs( )( )dcRCc tr

2、 tdt/( )1,t Th tet .1)(.0)(;1368. 0)(;1)(0hdttdhTdttdhTdttdhtTtt。202( )1;( )10.368;( )0tt Ttdc tdtTdc tdtTdc tdt 特点: /1( ),0t Tc tetT /( )()(0)t Tc tt TTet )0()1 (21)(22teTTtttcTt( ( ) )1 10 00 0 / /1 10 00 01 10 0( ( ) )1 1( ( ) ) ( ( ) )1 1( (1 10 00 0 / / ) ) 0 0. . 1 11 10 01 1/ /1 10 0G G s ss

3、ss sG G s s H H s ss ss ss s 1 1 / /1 10 00 0 / /( ( ) )1 11 10 00 0 / /1 1/ /1 10 00 0h hh hh hK Ks ss sK Ks ss sK K 1 10 0. . 1 11 10 00 03 3h hK K 0 0. . 3 3h hK K 20一、二阶系统的数学模型( )(1)MKG ss T sKssTKsssMio2)()()(2222)()()(nnnsssRsCsMnTKKTM212222121( )( ) ( )2()(ss )nnnnC ss R sssss ss j11223345 05

4、1.21.01.61.40.80.60.40.2c(t)16182 4 6 8 1012140t213540222nnss122, 1nns1、欠阻尼二阶系统(0)21,21nndsjj n21nd1( )R ss2221( )( )( )2nnnC ss R ssss 22221()()nnndndssss2( )1cossin1ntddh tett 211sin()01ntdett arccos12 arctg (2)= 0,无阻尼 njs2, 1)0(cos1)(ttthn(3)=1,临界阻尼ns2, 1nnnnnssssssC1)(1)()(222)0()1 (1)(ttethntnt

5、nntedttdh2)(122, 1nns)1(1,)1(12221nnTT12/2112( )1,0/1/1t Tt Teeh ttTTT T 0123456789101112nt c(t)0.20.40.60.81.01.21.41.61.82.0=00.10.20.30.40.50.60.70.81.02.0 21rdnt21(t)1sin()01ntdhett 21sin()01n rtd ret( )1rh t0pt tdhdt0)cos()sin(tetedtddtnnn21()dtgt21tg ,2 , 0pdtd pt21pddt 2/ 121( )1sin()1ph te %

6、2sin()1 2/ 1()1ph te2/ 1%100%e)11 (2tne95.011)(2snsttteth=55 . 35 . 3nst5 . 45 . 4nst(取=2时) c(t)t0121e1n t-21e1n t-n1 T包络线(取=5时) =0.7 。2.参数 对单位阶跃响应性能的影响) 1( ssKs1KsKsKsRsC)1 ()()(2KKKn21,46. 0)1(ln)1ln(22pp211lnp2/ 1%100%e)/(53. 312sradtpn22)rad/s(46.12nK)rad(10. 1cos1) s (18. 012Kn) srad(14. 312nd)

7、 s (37. 07 . 01ndt) s (65. 0drt) s (17. 25 . 3nst02. 0)(80. 25 . 4stns( )( )( )( )1( )(1)1( )(1)m mG sKG sKs sG ss T sKG ss T sK2 22 22 22 2/ /( ( ) )/ / /2 2n nm mm mm mn nn nK KT Ts ss ss s T TK KT Ts ss s 2 21 1%100%16. 3%100%16. 3%e e s2 20. 730. 731 1p pd dn nt t s0. 4860. 486r rd dt t 3 31. 21

8、. 2s sn ntsts( (1 1) )m mK Ks s T T s s 2 2/ 1/ 1%30%0. 3100%30%0. 3100%e e 2 2lnln 0. 31. 2lnln 0. 31. 21 1e e 0. 360. 36 s2 20 0. . 1 11 1p pd dn nt t 1 12 231. 431. 431. 431. 433. 633. 60. 9340. 9341 1n ns s 2 22222221130( )1130( )( )( )224. 211301( )224. 211301( )n nnnnnG sG ss sssssG sssssG s 2

9、 2( )1129( )1129( )( )1( )(2)(24. 2)1( )(2)(24. 2)n nn ns sG sG sss ss sss ss s 0t(s)11.30.1h(t) 12() 1()(ndsssTKsG2222)(nndnsszszsznd2ndnddnndsrzzztln3)1ln(21ln)2ln(213222tdntndndretre)1sin(2)1sin(1)(2trethdntnd%1001%2pndtder21dndptntnKK22222)(nntnsssnttK2121( )2 / (2)1ntnntnG sKs sKznd2nddT211010)

10、(2sss) s (7,%4 .60%) s (01. 1, ) s (55. 0, ) s (35. 0sprdtttt10)101 (10)(2sKsst10.50.162ttnK2222)(nntnsss22. 01012ttntKK16. 32ntnKK. ) s (22. 2,%3 .16%, ) s (15. 1, ) s (77. 0, ) s (43. 0, )rad(316. 0sprdsstttte)()(1)()()()(sHsGsGsRsCsniimiisszsKsDsMsRsCs11)()()()()()()(10111011( )( )()( )mmmmnnnnb

11、sbsbsbM ssmnD sa sa sasaLLssssszsKsCqjrkkkkjmii1)2()()()(11221qjrkkkkkkjjssCsBssAsAsC112202)()0()1sin(1)1cos()(2121210tteBCteBeAAthkkrktkkkkkkrkkktkqjtsjkkkkj21( )(0.671)(0.010.081)ssss%,st12,31.5,49.2ssj 1s11( )0.6711ssTs33 0.672.01stTss %020.591( )(0.671)(0.010.081)sssss21( )0.010.081sss10.4,10ns2

12、/ 1%100%25%e3.50.88snts55 lim (t)0tk )(sG)(sHR(s)E(s)C(s)-)()()()()(1)()()()(11101110nmasasasabsbsbsbsDsMsHsGsGsRsCsnnnnmmmm0)(1110nnnnasasasasDrkkkkqjjmiisssszsKsDsMsC12211)2()()()()()( rkkktkkkkkkrkkktkqjtsjtteBCteBeAtckkkkj122121)0()1sin(1)1cos()()0(0)(01110 aasasasasDnnnn(0,0,1,2, )iain( )(0.1s

13、1)(0.25s 1)KG ss320.0250.350sssK 01230.025,0.351aaaaK1)00iaK22)0D 132020.3500.025114aaKDaaK320.0250.350sssK 0024113521 20 3113231nnns a a a sa a a aaaaascca40 51 60 73311313 31 2313 51 3313 71 43142434131313naaaaaaac aac aacc aacc aacsccc ccc0sna3s2s1 13 32 24 41 12 2 1 15 52 20 05 52 2 1234501s0s1

14、15 56 60 05 56 6 2 24 41 15 56 61 1 04s04473223456ssssss6543210127413401340(4)0( 6)01.5416.704sssssss043)(24sssF064)(3sssF043)(24sssF 043)(24sssF( 13)/2j sK11)2(2nnss-R(s)E(s)C(s)21223122)()(nnnnKsssKss02)(21223nnnKssssD0750075006 .34)(123KssssD1011123750006 .34750075006 .3475006 .3475001KsKsKss6 .3

15、401 K07500) 1(7500) 1(6 .34) 1(112131Ksss0750075006 .34)(123KssssD0)4 .74667500(8 .74336 .31112131Ksss4 .7466750006 .31)4 .74667500(8 .74336 .314 .746675006 .318 .743311011123KsKsKss3 .3211 Klim( )lim( )sssst tee tee t )()(11)()()(sHsGsRsEse( )( )( ) ( )1( )( )eR sE ss R sG s H s)()(1)(lim)(lim)(lim

16、00sHsGssRssEteesstssvnjjvmiisTssKsHsG11) 1() 1()()(000011lim( )( )lim(1)(1)1mn vijssijG s HssT s00( )( )( )( )vKG s H sG s HssvsvssssKsRse010lim)(limvsvssssKsRse010lim)(limsRsRtRtr)()( 1)(pssssskRsHsGRsHsGRsHsGsRse1)()(lim1)()(1lim)()(1)(lim000)()(lim0sHsGkspKRkReKkpssp1101psspkRek2)()(sRsRtRtrvssss

17、skRsHssGRsHssGsRsRsHsGse)()(lim)()(lim)()(1lim0020100lim)()(limvssvsKsHsGskssvek0KRkReKkvssv110)()(sKsHsGhhssKe10111111011hssssKee5)101 (1hhhssssKKKee32)(21)(sRsRtRtrasssskRsHsGsRsRsHsGse)()(lim)()(1lim20302020lim)()(limvssasKsHsGskssaek00ssaekKRkReKkassa)15(1sss8 . 0)(sE)(sC)(sR5) 1(14) 15(5)()(sss

18、sssHsG,1,0pvaKKKK 0;1;sssssseee TteTTtTsTsTsLte/231)(11)()()(TtTtess320011lim)(limsTsTsssEessss1( )1(s)1eTssGTs22( )sin( )r ttR ss1/2222( )1(1)t TTsTe tLeTssT 222222cossin(1)(1)TTttTT0sin)1(cos)1()(222222tTTtTTtess01lim)(lim)(22200sTsTsssEesssssKsRssKsTsssRsTssHsGSsRsEsteessnjmjijnjjssstss010111000l

19、im)(lim)1 ()1 ()()1 (lim)()(1)(lim)(lim)(lim稳态误差为)()(lim1)()(1lim)()(1)(lim)(lim0000sHsGRsHsGRsHsGssRsEsessssss sRsRtRtr)(),( 1)(称称为为位位置置误误差差系系数数 )()(lim0sHsGKsppsskRe 1于是于是 0,II0,I1,0sspsspsspekekkRekk型系统型系统型系统型系统型系统型系统0 00 00 00 0( )( )lim( )limlim( )lim1( )( )1( )( )limlim( )( )lim( )( )( )( )lim

20、( )( )sssss ss ss ss ssR ssR sesE sesE sG s HsG s HsRRRRssG s HssG s HsssG s HssG s Hs 2 2( ( ) )1 1( ( ) ), ,( ( ) )R Rr r t tR R t t t tR R s ss s 0 0l li im m( ( ) )( ( ) )v vs sK Ks sG Gs s H Hs s 称称为为静静态态速速度度误误差差系系数数ssssv vR Re ek k于于是是 0,II,I,0,0ssvssvssvekkRekkek型型系系统统型型系系统统型型系系统统)()(lim)()(l

21、im)()(1)(lim)(lim2022000sHsGsRsHsGssRsHsGssRsEsessssss 32)(),( 121)(sRsRtRttr数数称称为为静静态态加加速速度度误误差差系系 )()(lim20sHsGsKsaasskRe 于是于是 kRekkekekssassassa,II,0,I,0,0型系统型系统型系统型系统型系统型系统122502( ),( )50(1)G sG sss s2122( )( )2(50)(1)2502( )1( )( )(50)(1)500150(1)G sE sss sN sG s G ss ssss s002(50)lim( )lim0.2(

22、50)(1)500ssnsssesE ss ss0.4ssssrssneee1,10,00,Isspvaabcekkkakbkcckk 23( )11( )(0)(0)(0)(0)( )2!3!eeeeeE sssssR S )()0(! 31)0(!21)0()0()()()(32sRssssRssEeeeee 2012( )( ) ( )() ( )eE ss R sCC sC sR s 则012( )( )( )( )ssetC r tC r tC r t故。0121(0),(0),(0),2!eeeCCC 令230123( )( )( )eE ssCC sC sC sR S因此) 1(

23、) 11 . 0(10)(ssssG10210)(2ssss9) 1(11)102(10)()()(22ssssssssRssC)0(,3cos1)(ttetht 1 . 01011)(vssKe pt 0)(th0| 3sin33cosptttttete313pttg1: 令 3. stgtp94. 0)3 .5743.1814. 3(31)31(311%37%10011)(%pth2: st05. 0|3cos|ttetests305. 0ln3: 令 2221(0.11)0.1( )1( )0.11001000.1esssssG sssss100( )s(0.11)G ss4501230

24、,0.01,9 10 ,1.9 10 ,CCCC 242530 109 101.9 10sss 2402040035130500( )sincos0.055cos( 524.9 )ssoetCCCtCCCtt )590cos()590(90sin5sintttooo000( )() cos 90()2550cos 905( 5)1000255055.90cos( 590(116.62.94)976.280.055cos(524.9 )osseeoeooetjtjjtjjtt 212( )( )( )( )1( )( )( )nnGsEsCsN sG s Gs H s 220.04980.115

25、( )2525sscsdsEsss 解:2212222212/ (1)( )( )( )1/ (1)( )nnKs T sEsCsN sK Ks T sKN sT ssK K 010lim( )/ssnnsesEsnK )()() 1(/ ) 1(1) 1(/)(21212322212sNKKsTKKsTsTTsTKsNTssKsTsTKTssKsEiiiiiin0)(lim0212123220snKKsTKKsTsTTsTsKssEeiiiinsssn0211322212121lim( )ssnnsiiiiiesEssK TsTnnTT sTsK K TsK KsK 0( )/N sns1(

26、 )/N sns) s (1) s () s (G) s (G1) s (G) s ( vnnnnvnnnnvKsasasasKssasasasKsG )1()()1()(111111则则设设vnnnnvKsasasassKs )1()1()(1111 )()(,/1121121asasasKssGKnnnnvv 取取,)(1 ssGr 当加入当加入时时当当 221rss) s (G v11n1nnn221vK)1sasasa( s)ss1(K) s ( ,/,/1121vvKaK 取取vnnnnvKsasasassasKs )1()(11121)()(2312321asasasKssasGnnnnv

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(二阶系统进行分析课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|