1、预初下册第五章 有理数5.1有理数的意义;正数和负数;有理数的加减;有理数的乘除;有理数的乘方零是正数和负数的分界。分数是由正分数和负分数组成的。正数和分数统称为有理数(rational number)有理数:整数:正整数、零、负整数 分数:正分数、负分数(考点:有理数的分类)如果我们把正数看成是分母为1的分数,那么在这个意义下,所有的有理数都是分数。5.2 数轴数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。任何一个有理数都可以用数轴上的一个点表示。(考点:数轴的三要素,有理数可以用数轴上的点表示)相反数只有符号不同的两个数,我们称其中一个数为另一个数的相反数(opposite nu
2、mber),也称为这两个数互为相反数,零的相反数是零。(考点:相反数的定义,互为相反数的两数的和为0)5.3绝对值一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值(absolute value)(考点:绝对值表示的意义)一个正数的绝对值是它本身。一个负数的绝对值是它的相反数。零的绝对值是零。正数大于零,零大于负数,正数大于负数。两个负数,绝对值大的那个数反而小。(重点)有理数的运算5.4 有理数加法法则: 同号两数相加,取原来的符号,并把绝对值相加。 异号两数相加,绝对值相等时和为零,绝对值不相等时,其和的绝对值为较大绝对值减去较小的绝对值所得的差,其和的符号取绝对值较大的加数的符号。
3、 一个数同零相加,仍得这个数。5.4有理数加法的运算律 交换律:a+b=b+a 结合律:(a+b)+ c=a+(b+c)5.5有理数的减法法则() 减去一个数,等于加上这个数的相反数 a-b=a+(-b)(重点)两数相乘的符号法则 正乘正得正,正乘负得负,负乘正得正,负乘负得正。(难点)5.6有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与零相乘,都得零。几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有因数为零,积就为零。(难点)也就是说,在积的各个因数中,只有一个负号,积为负;有两个负号,积为正;有
4、三个负号,积为负;有四个负号,积为正;有零时积就是零。5.7有理数除法法则两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数,都得零。甲数除以乙数(零除外)等于甲数乘以乙数的倒数。5.8 有理数的乘方(重点)求N个相同因数的积的运算,叫做乘方。乘法的结果叫做幂。在an中,a叫做底数,n叫做指数,an读作a的n次方,an看做是a的n次方结果时,读作a的n次幂。正数的任何次幂都是正数,负数的奇数次幂是负数,负数的偶数次幂是正数。(难点)5.9 有理数混合运算(考点:计算题中常考)混合运算的顺序:先乘方,后乘除,再加减;统计运算从左到右;如果有括号,先算小括号,后算中括号,再算大
5、括号。5.10 科学计数法(考点:给出一个数,让学生用科学计数法表示)把一个数写成a*10n(其中1a10,n是正整数),这种形式的计数方法叫做科学计数法(scientific notation)第六章 一次方程(组)及一次不等式(组)方程的意义;一次方程的意义;一次方程的解法;不等式的意义及解法第1节 方程与方程的解6.1 列方程1、用字母x、y、等表示所要求的未知的数量,这些字母称为未知数。含有未知数的等式叫做方程(equation)。在方程中,所含的未知数又称为元。为了求得未知数,在未知数和已知数之间建立一种等量关系式,就是列方程。6.2 方程的解2、如果未知数所取的某个值能使方程左右两
6、边的值相等看,那么这个未知数的值叫做方程的解(solution of equation)(重点)第2节 一元一次方程6.3 一元一次方程及其解法(难点)3、 只含有一个未知数且未知数的次数是一次的方程叫做一元一次方程(linear equation in one variable)4、等式性质1:等式两边同时加上(或减去)同一个数或一个含有字母的式子,说得结果仍是等式。 等式性质2:等式两边同时乘以同一个数(或除以同一个不为零的数),所得结果仍是等式。5、去括号的法则是:括号前带“+”号,去掉括号时括号内各项都不变符号。括号前带“”号,去掉括号时括号内各项都改变符号。(重点)6、解一元一次方程
7、的一般步骤是: - 去分母; - 去括号; - 移项; - 化成ax=b(a0)的形式 - 两边同除以未知数的系数,得到方程的解x=b/a7、列方程解应用题的一般步骤是: - 设未知数(元); - 列方程; - 解方程; - 检验并作答。第3节 不等式及其性质8、用不等号“”“”“”“”表示的关系式,叫做“不等式”。9、不等式性质1:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即: 如果ab,那么a+mb+m 如果ab,那么a+mb+m10、不等式性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即: 如果ab,且m0,那么ambm(或a/
8、mb/m) 如果ab,且m0,那么ambm(或a/mb/m)11、不等式性质3:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:如果ab,且m0,那么ambm(或a/mb/m) 如果ab,且m0,那么ambm(或a/mb/m)12、在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解。13、一般情况下,一元一次方程的解只有一个,一元一次不等式的解可以有无数个。不等式的解的全体叫做不等式的解集。(重点)14、只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。15、解一元一次不等式的一般步骤与解一元一次方程类似,可概括为: - 去分母; - 去括号; -
9、 移项; - 化成axb(或axb)的形式(其中a0) - 两边同除以未知数的系数,得到不等式的解集。16、由几个含有同一个未知数的一次不等式组成的不等式组,叫做一元一次不等式组。 不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。(重点) 求不等式组的解集的过程叫做解不等式组。 如果各个不等式的解集没有公共部分,那么这个不等式组无解。17、解一元一次不等式组的一般步骤是: - 求出不等式组中各个不等式的解集; - 在数轴上表示各个不等式的解集; - 确定各个不等式解集的公共部分,就得到这个不等式组的解集。(重点)第4节 一次方程组18、含有两个未知数的一次方程叫做二元一次方程。19
10、、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。20、二元一次方程的解有无数个,二元一次的解的全体叫做这个二元一次方程的解集。21、由几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。22、在二元一次方程组中,使每个方程都适合的解,叫做二元一次方程组的解。6.9 二元一次方程组及其解法(难点)23、通过“代入”消去一个未知数,将方程式转化为一元一次方程,这种解法叫做代入消元法,简称代入法。24、通过将两个方程相加(或相减)消去一个未知数,将方程组转化为一元一次方程,这种解法叫做加减消元法。(重点)
11、6.10 三元一次方程组及其解法25、如果方程组中有三个未知数,且含有未知数的项的次数都是一次,这样的方程组叫做三元一次方程组。26、列方程解应用题时要灵活选择未知数的个数。 对于含有两个未知数的应用题一般采用列二元一次方程组求解;对于含有三个未知数的应用题一般采用列三元一次方程组求解。第七章 线段与角的画法第1节 线段的相等与和、差、倍直线的画法;射线的画法;线段的画法;角的画法;角的测量1、 联结两点的线段的长度叫做两点之间的距离。(考点:距离的概念)2、两条线段可以相加(或相减),它们的和(或差)也是一条线段,其长度等于这两条线段的长度的和(或差)。3、将一条线段分成两条相等线段的点叫做
12、这条线段的中点。第2节 角4、角是具有公共端点的两条射线组成的图形。公共端点叫做角的顶点,两条射线叫做角的边。(考点:角的定义)5、角是由一条射线绕着它的端点旋转到另一个位置所成的图形。处于初始位置的那条射线叫做角的始边,终止位置的那条射线叫做角的终边。7.5 画角的和、差、倍6、两个角可以相加(或相减),它们的和(或差)也是一个角,它的度数等于这两个角的角度的和(或差)。7、从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。7.6 余角、补角(重点)8、如果两个角的度数的和是90,那么这两个角叫做互为余角,简称互余。其中一个角成为另一个角的余角。如果两个角的度
13、数的和是180,那么这两个角叫做互为补角,简称互补。其中一个角称为另一个角的补角。9、同角(或等角)的余角相等;(重点)同角(或等角)的补角相等;(考点:同角的补角相等在证明题中的应用)10、一个角与它的余角相等,这个角是怎样的角?是锐角 一个角与它的补角相等,这个角是怎样的角?是直角 互补的两个角能否都是锐角?不能 能否都是直角?可能 能否都是钝角?不能第八章 长方体的再认识第1节 长方体的元素长方体的顶点;长方体的棱;长方体的面;长方体的表面积;长方体的体积公式;长方体有六个面,八个顶点,十二条棱。长方体的每个面都是长方形。长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。长方体的六
14、个面可以分为三组,每组中的两个面的形状和大小都相同。第3节 长方体中棱与棱位置关系的认识(重点)如图(教材115页):棱EH与棱EF所在的直线在同一个面内,它们有惟一的公共点,我们称这两条棱相交。棱EF与棱AB所在的直线在同一个面内,但它们没有公共点,我们称这两条棱平行。棱EH与棱AB所在的直线既不平行,也不相交,我们称这两条棱异面。(判断棱的位置关系)一般地,如果直线AB与直线CD在同一平面内,具有惟一公共点,那么称这两条直线的位置关系为相交,读作:直线AB与直线CD相交。如果直线AB与直线CD在同一平面内,但没有公共点,那么称这两条直线的位置关系为平行,记作:ABCD,读作:直线AB与直线CD平行。如果直线AB与直线CD既不平行,也不相交,那么称这两条直线的位置关系为异面,读作:直线AB与直线CD异面。直线PQ垂直于平面ABCD,记住:直线PQ平面ABCD,读作:直线PQ垂直于平面ABCD。如何检验直线与平面垂直呢?可以用“铅垂线”检验。 如果细棒垂直于墙面,可以用“三角尺”检验。 还可以用“合页型折纸”检验直线是否垂直于平面。直线PQ平行于平面ABCD,记作:直线PQ平面ABCD, 读作:直线PQ平行于平面ABCD.如何检验直线与平面平行呢?可以用“铅垂线”检验。 也可以用“长方形纸片”检验。(考点:直线与平面位置关系的检验)注:红色为重点、蓝色为考点、黄色为难点