1、电磁学漫谈一、电磁学发展史一、电磁学发展史二、该课程的内容二、该课程的内容三、场的基本概念三、场的基本概念 一、电磁学发展史 1.最早的记载:公元前 600年左右 2.1745年,荷兰莱顿大学教授马森布罗克制成了莱顿瓶,可以将电荷储存起来,供电学实验使用,为电学研究打下了基础。3.1752年7月,美国著名的科学家、文学家、政治家富兰克林的风筝试验,证实了闪电式放电现象,从此拉开了人们研究电学的序幕。4.1753年,俄国著名的电学家利赫曼在验证富兰克林的实验时,被雷电击中,为科学探索献出了宝贵的生命。5.1638年,在我国的某些建筑学的书籍中就有关于避雷的记载:屋顶的四角都被雕饰成龙头的形状,仰
2、头、张口,在它们的舌头上有一根金属芯子,其末端伸到地下,如有雷电击中房顶,会顺着龙舌引入地下,不会对房屋造成危险。6.17711773年间,英国科学家卡文迪什进行了大量的静电试验,证明在静电情况下,导体上的电荷只分布在导体表面上。7.1785年,法国科学家库仑在实验规律的基础上,提出了第一个电学定律:库仑定律。使电学研究走上了理论研究的道路。8.1820年,由丹麦的科学家奥斯特在课堂上的一次试验中,发现了电的磁效应,从此将电和磁联系在一起。9.1822年,法国科学家安培提出了安培环路定律,将奥斯特的发现上升为理论。10.1825年,德国科学家欧姆得出了第一个电路定律:欧姆定律。11.1831年
3、,英国实验物理学家法拉第发现了电磁感应定律。并设计了世界上第一台感应发电机。12.1840年,英国科学家焦耳提出了焦耳定律,揭示了电磁现象的能量特性。13.1848年,德国科学家基尔霍夫提出了基尔霍夫电路理论,使电路理论趋于完善。奥斯特的电生磁和法拉第的磁生电奠定了电磁学的基础。14.电磁学理论的完成者英国的物理学家麦克斯韦(18311879)。麦克斯韦方程组用最完美的数学形式表达了宏观电磁学的全部内容。麦克斯韦从理论上预言了电磁波的存在。15.1866年,德国的西门子发明了使用电磁铁的发电机,为电力工业开辟了道路。16.1876年,美国贝尔发明了电话,实现了电声通信。17.1879年,美国发
4、明家爱迪生发明了电灯,使电进入了人们的日常生活。18.1887年,德国的物理学家赫兹首次用人工的方法产生了电磁波。19.随之,俄国的波波夫和意大利的马可尼,利用电磁波通信获得成功,开创了人类无线通信的新时代。二、该课程的内容 第一讲:电磁学的数学基础第一讲:电磁学的数学基础 矢量运算矢量运算 第二讲:电磁学的理论基础第二讲:电磁学的理论基础 麦克斯韦方程组麦克斯韦方程组 第三讲:微波炉的工作原理第三讲:微波炉的工作原理 材料的电磁特性及边界条件材料的电磁特性及边界条件 第四讲:静态场分析第四讲:静态场分析静态场的性质及其求解方法静态场的性质及其求解方法 第五讲:场与路的关系第五讲:场与路的关系
5、 路量与场量之间的关系路量与场量之间的关系 第六讲:隐身飞机是怎么隐身的?第六讲:隐身飞机是怎么隐身的?平面电磁波特性平面电磁波特性 第七讲:电磁波是怎么产生的?第七讲:电磁波是怎么产生的?电磁波的辐射原理电磁波的辐射原理三、场的基本概念 1.什么是场?重力场、温度场、电磁场、a.从数学角度:场是给定区域内各点数值的集合,这些数值规定了该区域内一个特定量的特性。比如:T 是温度场中的物理量,T 就是温度场 b.从物理角度:场是遍及一个被界定的或无限扩展的空间内的,能够产生某种物理效应的特殊的物质,场是具有能量的。2.场的分类 a.按物理量的性质分:标量场:描述场的物理量是标量。矢量场:描述场的
6、物理量是矢量。b.按场量与时间的关系分:静态场:场量不随时间发生变化的场。动态场:场量随时间的变化而变化的场。动态场也称为时变场。第第1 1章章 矢量分析矢量分析一、矢量和标量的定义一、矢量和标量的定义二、矢量的运算法则二、矢量的运算法则三、矢量微分元:线元,面元,体元三、矢量微分元:线元,面元,体元四、标量场的梯度四、标量场的梯度六、矢量场的旋度六、矢量场的旋度五、矢量场的散度五、矢量场的散度七、重要的场论公式七、重要的场论公式一、矢量和标量的定义一、矢量和标量的定义1.标量:标量:只有大小,没有方向的物理量。矢量表示为:|AA a所以:一个矢量就表示成矢量的模与单位矢量的乘积。其中:为矢量
7、的模,表示该矢量的大小。为单位矢量,表示矢量的方向,其大小为1。|A a2.矢量:矢量:不仅有大小,而且有方向的物理量。如:力 、速度 、电场 等FEv如:温度 T、长度 L 等例1:在直角坐标系中,x 方向的大小为 6 的矢量如何表示?6xa图示法:6xaGNFfFxy力的图示法:FNfFFF二、矢量的运算法则1.加法加法:矢量加法是矢量的几何和,服从平行四边形规则。a.满足交换律:ABBAb.满足结合律:CABBACBAC()()()()ABCDACBDzoyx三个方向的单位矢量用 表示。,xyzaaa根据矢量加法运算:xyzAAAA,xxxyyyzzzAA aAA aAA a所以:xxy
8、yzzAA aA aA a在直角坐标系下的矢量表示:AxAyAzA其中:矢量:xxyyzzAA aA aA a模的计算:222|xyzAAAA单位矢量:|yxzxyzAAAAaaaaAAAA方向角与方向余弦:,|cos,|cos,|cosAAAAAAzyxcoscoscosxyzaaa在直角坐标系中三个矢量加法运算:()()()xxxxyyyyzzzzABCABC aABC aABC azoyxAxAyAzA2.减法:换成加法运算()DABAB ABCBAB逆矢量:和 的模相等,方向相反,互为逆矢量。B()BDBADABC0在直角坐标系中两矢量的减法运算:()()()xxxyyyzzzABAB
9、 aAB aAB a推论:任意多个矢量首尾相连组成闭合多边形,其矢量和必为零。3.3.乘法:乘法:(1)标量与矢量的乘积:0|00kkAk A akk方向不变,大小为|k|倍方向相反,大小为|k|倍(2)矢量与矢量乘积分两种定义a.标量积(点积):|cosA BABBA两矢量的点积含义:一矢量在另一矢量方向上的投影与另一矢量模的乘积,其结果是一标量。在直角坐标系中,已知三个坐标轴是相互正交的,即0,0,01,1,1xyxzyzxxyyzzaaaaaaaaaaaa有两矢量点积:()()xxyyzzxxyyzzA BA aA aA aB aB aB a zzyyxxBABABA结论:两矢量点积等于
10、对应分量的乘积之和。推论1:满足交换律推论2:满足分配律推论3:当两个非零矢量点积为零,则这两个矢量必正交。A BB A()ABCA BA C推论1:不服从交换律:,A BB AA BB A 推论2:服从分配律:()AB CA BA C推论3:不服从结合律:()()AB CA BC推论4:当两个非零矢量叉积为零,则这两个矢量必平行。b.矢量积(叉积):|sincABABa含义:两矢量叉积,结果得一新矢量,其大小为这两个矢量组成的平行四边形的面积,方向为该面的法线方向,且三者符合右手螺旋法则。BAca在直角坐标系中,两矢量的叉积运算如下:xyzxyzxyzaaaABAAABBB()()x xy
11、yz zx xy yz zA BAaAaAaBaBaBa ()()()yzzyxzxxzyxyyxzABAB aABAB aABAB a两矢量的叉积又可表示为:xyzo(3)三重积:三个矢量相乘有以下几种形式:()A B C矢量,标量与矢量相乘。()ABC标量,标量三重积。矢量,矢量三重积。a.标量三重积法则:在矢量运算中,先算叉积,后算点积。定义:|sincosA BCA B C()ABC含义:标量三重积结果为三矢量构成的平行六面体的体积。ABChB C 注意:先后轮换次序。推论:三个非零矢量共面的条件。在直角坐标系中:()0ABC()xyzxyzxyzAAAABCBBBCCC()()xyz
12、xxyyzzxyzxyzaaaAB CA aA aA aBBBCCCb.矢量三重积:()()()ABCB A CC A B ()()()VABCCABBCAABChB C例2:12342,3223,325xyzxyzxyzxyzraaaraaaraaaraaa 求:4123rarbrcr中的标量 a、b、c。解:325(2)(32)(23)xyzxyzxyzxyzaaaaaaab aaacaaa(22)(3)(23)xyzabc aabc aabc a 则:设213abc 22332235abcabcabc例3:已知263xyzAaaa43xyzBaaa求:确定垂直于 、所在平面的单位矢量。A
13、B解:已知AB所得矢量垂直于 、所在平面。ABnABaAB 263151030431xyzxyzaaaABaaa1(326)7nxyzaaaa 222|15(10)3035AB 已知A点和B点对于原点的位置矢量为 和 ,求:通过A点和B点的直线方程。例4:ab()cak ba其中:k 为任意实数。(1)ck akbxyzCcABab解:在通过A点和B点的直线方程上,任取一点C,对于原点的位置 矢量为 ,则c三、矢量微分元:线元、面元、体元例:d,d,dFlBSV其中:和 称为微分元。d,dlSdV1.直角坐标系在直角坐标系中,坐标变量为(x,y,z),如图,做一微分体元。线元:ddyylyad
14、dddxyzlxayazadldSddxxlxaddzzlza面元:dd dxxSy za体元:dd d dVx y zdd dyySx zadd dzzSx ya2.圆柱坐标系在圆柱坐标系中,坐标变量为 ,如图,做一微分体元。(,)rz线元:ddddrzlrarazadd drrSrzadd dSr zadd dzzSrradd d dVr rz面元:体元:3.球坐标系在球坐标系中,坐标变量为 ,如图,做一微分体元。(,)R 2dsin d dRRSRa dsin d dSRRadd dSR Radddsin dRlRaRaRa 线元:面元:体元:2dsin d d dVRR a.在直角坐标
15、系中,x,y,z 均为长度量,其拉梅系数均为1,即:1321hhh1,1321hrhhb.在柱坐标系中,坐标变量为 ,其中 为角度,其对应的线元 ,可见拉梅系数为:(,)rzdrac.在球坐标系中,坐标变量为 ,其中 均为 角度,其拉梅系数为:(,)R,sin,1321RhRhh注意:在正交曲线坐标系中,其坐标变量 不一定都是长度,其线元必然有一个修正系数,这些修正系数称为拉梅系数,若已知其拉梅系数 ,就可正确写出其线元、面元和体元。123(,)u u u123,h h h体元:123123dd ddVh h h u uu123112233dddduuulh u ah u ah u a线元:1
16、12323ddduSh h uu a221313dd duSh hu u a331212dd duSh hu u a面元:正交曲线坐标系:四、标量场的梯度四、标量场的梯度1.标量场的等值面可以看出:标量场的函数是单值函数,各等值面是互不 相交的。以温度场为例:热源等温面b.梯度定义:标量场中某点梯度的大小为该点最大的方向导数,其方向为该点所在等值面的法线方向。数学表达式:dgraddnan2.标量场的梯度a.方向导数:ddl空间变化率,称为方向导数。ddn为最大的方向导数。标量场的场函数为),(tzyx00dP1P2Pdndl计算:dcosdndraddglddddddnlnlddnlaan在
17、直角坐标系中:ddddxyzxyzddddxyzlxayaza所以:gradxyzaaaxyz梯度也可表示:grad 00dP1P2Pdndl在柱坐标系中:在球坐标系中:在任意正交曲线坐标系中:rzaaarrzsinRaaaRRR 123112233uuuaaah uh uh u在不同的坐标系中,梯度的计算公式:在直角坐标系中:xyzaaaxyz五、矢量场的散度五、矢量场的散度1.1.矢线(场线):矢线(场线):在矢量场中,若一条曲线上每一点的切线方向与场矢量在该点的方向重合,则该曲线称为矢线。2.2.通量:通量:定义:如果在该矢量场中取一曲面S,通过该曲面的矢线量称为通量。表达式:dSvS若
18、曲面为闭合曲面:dSvS+-讨论:讨论:a.如果闭合曲面上的总通量0 说明穿出闭合面的通量大于穿入曲面的通量,意味着闭合面内存在正的通量源。b.如果闭合曲面上的总通量0 说明穿入的通量大于穿出的通量,那么必然有一些矢线在曲面内终止了,意味着闭合面内存在负源或称沟。c.如果闭合曲面上的总通量0说明穿入的通量等于穿出的通量。3.3.散度:散度:a.定义:矢量场中某点的通量密度称为该点的散度。b.表达式:0ddivlimSVFSFV c.散度的计算:在直角坐标系中,如图做一封闭曲面,该封闭曲面由六个平面组成。矢量场 表示为:FxxyyzzFF aF aF a1Szyx6S5S4S3S2S123123
19、ddddSSSSFSFSFSFS456456dddSSSFSFSFS111d()()xxxSFSF x ay za zyxFx)(1222d()xxxSFSF x ay za 在 x方向上:计算穿过 和 面的通量为2S1S1()xF xxy z 11()()()xxxF xF xxF xxx 因为:221()d()xxSF xFSF xy zx y zx 则:在 x 方向上的总通量:1212ddxSSFFSFSx y zx 在 z 方向上,穿过 和 面的总通量:5S6S5656ddZSSFFSFSx y zz 整个封闭曲面的总通量:dyxzSFFFFSx y zxyz 3434ddySSFFS
20、FSx y zy 同理:在 y方向上,穿过 和 面的总通量:3S4S该闭合曲面所包围的体积:zyxV0ddivlimSVFSFV zFyFxFzyx通常散度表示为:divFF4.4.散度定理:散度定理:ddSVFSF V物理含义:穿过一封闭曲面的总通量等于矢量散度的体积分。柱坐标系中:1()1rzFF rFFrrrz球坐标系中:22(sin)()111sinsinRFFR FFRRRR132231 21 31 23123()()1uuuF h hF hhF hhFhh huuu正交曲线坐标系中:直角坐标系中:yxzFFFFxyz常用坐标系中,散度的计算公式六、矢量场的旋度六、矢量场的旋度1.1
21、.环量环量:在矢量场中,任意取一闭合曲线,将矢量沿该曲线积分称之为环量。dlCFl可见:环量的大小与环面的方向有关。2.2.旋度旋度:定义:一矢量其大小等于某点最大环量密度,方向为该环 的法线方向,那么该矢量称为该点矢量场的旋度。表达式:max01rotlimd nlSFaFlS 旋度计算:以直角坐标系为例,一旋度矢量可表示为:()()()xxyyzzFFaFaFa 10d()limlxSxFlFS xxyyzzFF aF aF a场矢量:1dddddabbccddaabbccddalllllFlFlFlFlFl其中:为x 方向的环量密度。()xFxzy旋度可用符号表示:rotFF dcbad
22、d()abzlza1dzylFlFzFy ()()yzzyFFFyzFzyyz ()yzxFFSyz其中:ddbcylyaddcdzlzadd()daylya可得:()yzxFFFyz()xzyFFFzx()yxzFFFxy同理:xzydcba所以:10d()limlxSxFlFS yyxxzzxyzFFFFFFFaaayzzxxy旋度公式:为了便于记忆,将旋度的计算公式写成下列形式:xyzxyzaaaFxyzFFF 类似地,可以推导出在广义正交坐标系中旋度的计算公式:对于柱坐标、球坐标,已知其拉梅系数,代入公式即可写出旋度的计算公式。1231231231 231231231uuuuuuhah
23、 ah aFhh huuuh Fh Fh F3.3.斯托克斯定理:斯托克斯定理:物理含义:物理含义:一个矢量场旋度的面积分等于该矢量沿此曲面周界的曲线积分。一个矢量场旋度的面积分等于该矢量沿此曲面周界的曲线积分。()ddSlFSFl七、重要的场论公式七、重要的场论公式(1)()0 1.1.两个零恒等式两个零恒等式 任何标量场梯度的旋度恒为零。(2)()0F 任何矢量场的旋度的散度恒为零。在圆柱坐标系中:2222221)(1zrrrrr在球坐标系中:22222222111()(sin)sinsinRRRRRR在广义正交曲线坐标系中:2231 31 21 231112223331()()()h hhhhhhh huhuuhuuhu2.2.拉普拉斯算子拉普拉斯算子 2()在直角坐标系中:2222222zyx)()AAA AAA)()()()()()A BABBA ABBA ()A BBA AB ()()()A BAB BABAAB 3.3.常用的矢量恒等式常用的矢量恒等式