1、相控阵雷达与芯片系统相控阵雷达与芯片系统在在5G通信上的应通信上的应用用Enabling technologies for 5G2 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Enabling technologies for 5G3 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Why do we need phased array for mm-Wave system?where4 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017P G GTXTXRX24R2Friis Free S
2、paceEquation:PRX PTX is transmit power PRX is receive powerGTX is transmit antennagain GRX is receive antennagain is wavelengthR is dis tan ce betweentransmitter and receiverFor WLAN system,fc=2.4GHz,BW=20MHz,Linked budget loss:20*log10(1/2.4)+10*log10(1/2e6)=-80dBFor mm-wave antenna system like 60G
3、Hz,fc=60GHz,BW=2GHz,Linked budget loss:20*log10(1/60)+10*log10(1/2e9)=-128dBi.e.In order for mm-wave system to achieve similar link budget as WLAN system with similar PTX,we need to rely on directional antenna point to point communication with high gain GTX and GRX.The Values and Goals of 5G Antenna
4、5 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017术语定义:术语定义:AoB天线AoB即Antenna on Board,是一种基于PCB工艺的天线射频一体化的设计。天线印制在PCB上,并将已封装的射频芯片焊 接在该PCB同平面或者不同平面上,该PCB制成板称为AoB模块。AoB一般天线规模比较大,如256单元的天线阵列。AiP天线AiP天线即Antenna in Package,天线通过PCBLTCC或其他工艺与射频裸片封装在一起的模块,或天线直接制作在裸片上并封装在一起的模块,该模块一般带有BGA焊球,可直接焊接在PCB母板上使用。通常AiP天线阵列的规
5、模较小。双极化天线双极化天线的特点是含水平与垂直或倾斜+-45度两种极化方式。其优点是同时可以传输或接收双数据流,同时实现波 束任意指向而互不干扰。对于未来的5G通信,双极化天线优于单极化天线更高传输速率、更多灵活性、更加鲁棒性等 特点,满足5G通信中回传、AP、移动终端等场景要求。瓦片式架构军用领域常用术语,主要依赖密度集成技术(HDI)和小型化、高性能高可靠射频垂直互联。采用瓦片式架构的相控阵 雷达非常利于散热,也就大大减少了功率自耗,大大增加了天线阵列的性能。砖块式架构是早期较流行的阵列结构,元器件放置方向垂直于相控阵天线孔径平面,辐射阵元通常采用偶极子或锥形槽天线。其电路与结构设计遵循
6、传统的分系统概念,信号互联、测试与封装技术继承性好,缺点是纵向尺寸大。AESA有源相控阵技术AESA是electronically scanned array的缩写,电子扫描阵列雷达是指一类通过改变天线阵列所发出波束的合成方式,来 改变波束扫描方向的雷达。这种设计有别于机械扫描的雷达天线PPAR无源相控阵雷达PPAR是Passive Phased Array Radar的缩写,即无源电子扫描阵列雷达的一种。“无源”的意思是指天线表面的阵列单元只有改变“信号相位”的能力而没有发射信号的能力。Phased Array Simulation Process6 2017 ANSYS,Inc.July
7、31,2017ANSYS UGM 2017Design Procedures7 2017 ANSYS,Inc.July 31,2017ANSYS UGM 20171.完成天线单元原型设计完成天线单元原型设计2.完成天线单元完成天线单元floquet mode分析分析3.完成天线阵列设计完成天线阵列设计4.完成波束成形与波束扫描设计完成波束成形与波束扫描设计5.射频馈线分析射频馈线分析6.系统级联协同仿真系统级联协同仿真Part I Antenna Unit Design8 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Antenna Unit DesignA
8、ntenna unit design use“cross slot”aperture structure,two feeding structure are micro-strip and strip line for dual-polarization antenna,the antenna unit performance has RL-15dB with 9 GHz bandwidth.Two patch antenna were used for antenna unit design,the top patch will increase the BW of antenna.Name
9、TypeMaterialDielectric FillPropertylayer 1dielectricPP1layer 2MetalcopperPP1patchlayer 3dielectricPP3layer 4MetalcopperPP3patchlayer 5dielectricPP1layer 6MetalcopperPP2microstriplayer 7dielectricPP2layer 8MetalcopperPP2groundlayer 9dielectricPP2layer 10MetalcopperPP2Strip linelayer 11dielectricPP2la
10、yer 12MetalcopperPP2groundlayer 13dielectricPP1layer 14MetalcopperPP1groundStackup layers for antenna and PCBantenna unit Geometrystrip line feedMicrostrip line feedGrd&aperture Geometry9 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Antenna Unit Design in free spaceAntenna element in free space,S11-15 d
11、B,bandwidth of RL is 5864GHzIsolation level between 5766GHz is less than-30dBThe realized gain of unit is 7.9dB,typical patch antenna patternantenna unit realized gainReturn Loss of antenna unitisolation of antenna unit10 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Antenna Unit in ArrayAntenna unit in
12、infinite array,S11-10 dB,Bandwidth is 6064GHz,nearly 4GHzIsolation level between 5766GHz is less than-30dBThe Unit gain in infinite array is 2.8dB,the difference between co-polar&cross-polarization is 40dB.antenna unit realized gainReturn Loss of antenna unitisolation of antenna unitantenna unit co-
13、polar vs cross-polar realized gain11 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Part II floquet mode analysis forScan Blindness12 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Floquet mode AnalysisFloquet mode calculator can simulate main and higher wave mode while terminated other undesired mode by unit l
14、ength of attenuation (dB/length)Grid sizeFrequencyScan of range13 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Scan blindness Simulation(realized gain vs frequency)0,0220,0scos()2 TEG 4A TMRealized Gain calculated directly from Floquet Transmission CoefficientsRealized gain at Phi=0 frequency sweepReali
15、zed gain at Phi=90 frequency sweepFrom Floquet mode simulation,the realized gain doesnt degraded when beam scan from theta 060 degree,it indicates no scan blindness were found between 5671GHzIt found the realized gain drops when beam scan from theta from 5060 deg,it indicates there is scan blindness
16、 at phi=90(E-plane)14 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Animation of E filed for theta scan2017/7/3E field for Theta 0 Phi 0(broadside)E field for Theta 0 Phi 90(broadside)E field for Theta 60 Phi 0E field for Theta 60 Phi 90From E-filed Animation,there is no higher mode(grating lobe or surfa
17、ce wave)were found from scan elevation angle of 060 degree115 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Part III Antenna array simulation16 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Antenna Array 256 Elements Simulation ResultsRectangular array with 16X16 elements,when array feed uniformly,peak gain i
18、s 26.8dB,HPBW is 6.37 degWhen array feed uniformly,the active S parameter of center element is-24dB,the edge elements is-24 dBHFSS simulation for 256 elements using FA-DDM profile:Simulation time is 29 hrs Total RAM 647GBantenna array simulation using FA-DDMArray 2D radiation pattern at 60GHzantenna
19、 active S parametersCenter elementEdge elements17 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Dual Polarization Antenna Array Beam Steer PerformanceRectangular array with 16X16 elements,when array feed uniformly,peak gain is 26.8dB,HPBW is 6.37 degDual-polarization array can realize any beam point and
20、beam steer,when beam point to elevation angle of 60dB,the realized gain only drop 3.5dB(13%)Antenna Array Beam Steer at E planeTheta scanHPBW at E planePeak Gain at E planeHPBW at H planePeak Gain at H plane06.3726.876.3927.18-307.4726.977.4227.15307.4626.83-6012.3623.4712.4123.386012.3923.42Antenna
21、 Array Beam Steer at H planeAntenna Array Beam Steer at E&H plane18 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Dual Polarization Antenna Array Beam Steer Performance3D radiation pattern for E-plane and H-plane beam scan,the dual polarization antenna can realized scanrange of elevation angle of-6060 de
22、greeThere is no amplitude ripple for main lobes and side lobes,it implies dual-polarization array can support dual stream of data transmission.19 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Part IV Antenna array with PCB feeding network20 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Stackup in 3D layout21
23、2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Antenna with Feed linesTop viewSketch viewSide viewAntenna to PCB to BGA transition22 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Antenna to PCB mappingANTRF portA1,1RF10A1,2RF9A1,3RF1A1,4RF2A2,1RF12A2,2RF11A2,3RF3A2,4RF4A3,1RF13A3,2RF14A3,3RF6A3,4RF5A4,1RF15A4,
24、2RF16A4,3RF8A4,4RF7A1,1A2,1A3,1A1,2A1,3A1,4RF1RF2RF3RF4RF5 RF6RF7RF8RF9RF10RF11 RF12RF13RF14 RF15RF16A4,123 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Return Loss of Antenna from BGA24 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017isolation level between BGA port Overall isolation level-10dB Worse case hap
25、pen at center RF port(RF4 to RF5&RF12 to RF13)25 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Phase difference simulation modelAntenna port (output)RF ports withinFEM(input)16 waveport for CPW line26 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Phase difference from FEM RF port to Antenna Overall phase diff
26、erence is with 5 degree variation The largest phase difference occurs at RF8&RF16 with 7 degree variation27 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Phase difference from FEM RF port to Antenna28 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Freq GHz555760626466687071cang_deg(St(P1,RF1)87.9263.2726.993.3
27、1-20.26-44.09-68.63-94.33-107.66cang_deg(St(P2,RF2)91.9167.4831.227.34-16.47-40.50-65.15-90.64-103.74cang_deg(St(P3,RF3)91.0566.6130.446.65-17.08-41.09-65.83-91.65-105.02cang_deg(St(P4,RF4)92.8168.2632.098.48-14.88-38.34-62.35-87.28-100.17cang_deg(St(P5,RF5)92.7468.2032.048.46-14.89-38.37-62.39-87.3
28、6-100.28cang_deg(St(P6,RF6)91.3866.9830.877.10-16.62-40.62-65.34-91.11-104.44cang_deg(St(P7,RF7)91.8567.4231.187.31-16.49-40.54-65.17-90.69-103.81cang_deg(St(P8,RF8)87.7263.0026.692.93-20.18-44.05-68.63-94.32-107.64cang_deg(St(P9,RF9)88.0063.3527.053.62-20.04-43.92-68.49-94.22-107.58cang_deg(St(P10,
29、RF10)92.0867.6431.387.52-16.29-40.32-64.95-90.49-103.61cang_deg(St(P11,RF11)91.2666.8330.686.90-16.83-40.84-65.57-91.37-104.73cang_deg(St(P12,RF12)92.7768.2432.068.46-14.90-38.35-62.33-87.23-100.10cang_deg(St(P13,RF13)92.5467.9831.808.21-15.14-38.58-62.56-87.46-100.34cang_deg(St(P14,RF14)91.4167.013
30、0.917.15-16.57-40.60-65.35-91.18-104.55cang_deg(St(P15,RF15)91.6467.1830.927.03-16.78-40.82-65.47-91.02-104.15cang_deg(St(P16,RF16)87.9063.2127.213.40-20.17-43.93-68.08-93.97-107.39min87.7263.0026.692.93-20.26-44.09-68.63-94.33-107.66max92.8168.2632.098.48-14.88-38.34-62.33-87.23-100.10average90.946
31、6.4230.226.49-17.10-40.94-65.39-90.90-104.07delta5.095.265.395.565.385.746.307.107.56Insertion loss Overall insertion loss from RF port to Antenna port-1.5dB29 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Gain VS realized GainTypical element gain (not incl.mismatching)Typical Element Realized gain(incl.
32、mismatching)Typical element gain (not incl.mismatching)30 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Typical Element Realized gain(incl.mismatching)Element Gain at 70GHz at broadside Element gain has some variation between edge elements and center element.Half power Beamwidth also varies from 70100 de
33、g at H plane and 5590 deg at E plane.Realized gain variation is about 3dB due to mismatching ortransition loss(PCB trace/vias).31 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Beam Steer Performancebroadside32 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Scan at H planScan at E planBeam Steer Performance inc
34、l.PCB trace and BGAH plane beam steer performanceE plane beam steer performance33 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Beam Steer Performance for different frequencyE plane beam steer performance atfrequency of 57.5/62/66/70GHzE plane beam steer performance at frequency of 57.5/62/66/70GHz34 201
35、7 ANSYS,Inc.July 31,2017ANSYS UGM 2017 A set of phase at RF port for array have arranged for different frequencies,in generalhigher frequency require large phase shift between adjacent elements.It shows realized gain of higher frequency such as 70GHz usually has higher gain when small scan angle set
36、,while realized gain of 70GHz drops significantly when large scan angle occur.it may caused by mismatching or scan blindness at 70GHz.The realized gain compared to gain at 70G has 4dB degradation,this may caused by reflection at FEM RF port.Part V System Analysis for Beamforming35 2017 ANSYS,Inc.Jul
37、y 31,2017ANSYS UGM 2017AntennaarrayPhaseshifterPhase shifterPower dividerPower divider36 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Phased Array System SimulationPush ExcitationBroadside pattern37 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017Beam scan patternChip Package System simulation38 2017 ANSYS,Inc
38、.July 31,2017ANSYS UGM 2017多物理分析多物理分析单芯片封装热分析39 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017多芯片封装热分析Conclusion40 2017 ANSYS,Inc.July 31,2017ANSYS UGM 2017 Mm-wave wireless communications has become a research hotspot,it will play a very important role in 5G communications Phased array design is the key
39、 technology for point to point communication with high gain,the beam forming design is key for wide coverage realized by beam scan.Full-wave EM simulation must be performed by verifying array and beam steer performance.System performance must be varied by circuit/system analysis and multi-physics simulations.感谢聆听感谢聆听