1、 二次函数最值问题二次函数最值问题 1、小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化 (1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,这个三角形面积S最大?最大面积是多少?解:(1)x02x212S(2)a=21-0 S有最大值0221202a2bx)(S的最大值为200200220212S当x为20cm时,三角形面积最大,最大面积是200cm2。2.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B
2、同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动设运动时间为x秒,PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求PBQ的面积的最大值.解:(1)SPBQ=21PBBQ,PB=ABAP=182x,BQ=xy=21(182x)x,即y=x2+9x(0 x4)(2)由(1)知:y=x2+9x,2948129y=(x )2+,当0 xy随x的增大而增大,而0 x4,当x=4时,y最大值=20,即PBQ的最大面积是20cm23如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向
3、点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动(1)设运动开始后第t秒钟后,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围(2)t为何值时,S最小?最小值是多少?解:(1)第t秒钟时,AP=tcm,故PB=(6t)cm,BQ=2tcm,故SPBQ=(6t)2t=t2+6tS矩形ABCD=612=72S=72SPBQ=t26t+72(0t6);(2)S=t26t+72=(t3)2+63,当t=3秒时,S有最小值63cm4在某居民小区要在一块一边靠墙(墙长15m)的空地上
4、修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成如图,若设花园的BC边长为x(m)花园的面积为y(m2)(1)求y与x之间的函数关系式,并求自变量的x的范围(2)当x取何值时花园的面积最大,最大面积为多少?解:(1)四边形ABCD是矩形,AB=CD,AD=BC,BC=xm,AB+BC+CD=40m,AB=花园的面积为:y=x=x2+20 x(0 x15);y与x之间的函数关系式为:y=x2+20 x(0 x15);(2)y=x2+20 x=(x20)2+200,a=0,当x20时,y随x的增大而增大当x=15时,y最大,最大值y=187.5当x取15时花园的面积最大,最
5、大面积为187.5二次函数中常见二次函数中常见图形的图形的的面积问题的面积问题xyOMENA图五OxyDC图四xyODCEB图六PxyOABD图二ExyOABC图一xyOAB图三1、说出如何表示各图中阴影部分的面积?4、如图1,抛物线yx2bxc与x轴交于A(1,0),B(3,0)两点 (1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使PBC的面积最大?若存在,求出点P的坐标及PBC的面积最大值;若没有,请说明理由解
6、:(1)将A(1,0),B(3,0)代入y=x2+bx+c中得抛物线解析式为:y=x22x+3;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;解:(2)存在 理由如下:由题知A、B两点关于抛物线的对称轴x=1对称直线BC与x=1的交点即为Q点,此时AQC周长最小y=x22x+3C的坐标为:(0,3)直线BC解析式为:y=x+3,Q点坐标即为解得Q(1,2);(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使PBC的面积最大?若存在,求出点P的坐标及PBC的面积最大值;若没有,请说明理由解
7、:(3)存在理由如下:设P点(x,x22x+3)(3x0)SBPC=S四边形BPCOSBOC=S四边形BPCO 若S四边形BPCO有最大值,则SBPC就最大,S四边形BPCO=SBPE+S直角梯形PEOC=BE PE+OE(PE+OC)(x+3)(x22x+3)+(x)(x22x+3+3)=当x=时,S四边形BPCO最大值=SBPC最大=当x=时,x22x+3=点P坐标为(,),)方法二 如图4,连接P0,设P点(x,x22x3)(3x0)4212xxyxy3、已知抛物线与轴交与A、C两点,与轴交与点B,(1)求抛物线的顶点M的坐标和对称轴;(2)求四边形ABMC的面积.C4、已知一抛物线与x
8、轴的交点是A(-2,0)、B(1,0),且经过点C(2,8)(1)求该抛物线的解析式;(2)求该抛物线的顶点D的坐标;(3)求四边形ADBC的面积.5、如图,已知抛物线y=ax2+bx+c(a0)经过A(-2,0),B(0,4),C(2,4)三点,且与x轴的另一个交点为E。(1)求该抛物线的解析式;(2)求该抛物线的顶点D的坐标和对称轴;(3)求四边形ABDE的面积 xxABCNABSSCPOABy6、已知二次函数与B的左边),与y轴交于点C,顶点为P.(1)结合图形,提出几个面积问题,并思考解法;(2)求A、B、C、P的坐标,并求出一个刚刚提出的图形面积;(3)在抛物线上(除点C外),是否存
9、在点N,使得,若存在,请写出点N的坐标;若不存在,请说明理由。322xxy解(1)略(2)当y=0时,x 2 2x3=0,解得:x 1=3,x 2=1,点A的坐标是(1,0),点B的坐标是(3,0),当x=0时,y=3,点C的坐标是(0,3),y=x 2 2x3=(x1)2 4,P(1,4),即A(1,0),B(3,0),C(0,3),P(1,4);轴交于A、B两点(A在xABCNABSSAyBOC变式一图变式一:变式一:在抛物线的对称轴上是否存点N,使得,若存在直接写出N的坐标;若不存在,请说明理由.322xxyxy7、抛物线与轴交与A、B(点A在B右侧),与轴交与点C,若点E为第二象限抛物
10、线上一动点,点E运动到什么位置时,EBC的面积最大,并求出此时点E的坐标和EBC的最大面积32,2xxxEBCS提示:点E的坐标可以设为(),x的取值范围是-3x0,根据题2求三角形面积的思路建立EBC的面积关于x的函数关系式,体会点E位置的不确定性对方法的选择是否有影响如果抛物线 过定点M(1,1),则称此抛物线为 定点抛物线。(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛 物线的一个解析式。小敏写出了一个答案:,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线,求该抛物线顶点纵坐标的值最小时的解析式,请你解答。解:(1)依题意,选择点(1
11、,1)作为抛物线的顶点,二次项系数是1根据顶点式得:y=x2-2x+2;(2)定点抛物线的顶点坐标为(b,c+b2+1),且-1+2b+c+1=1,c=1-2b,顶点纵坐标c+b2+1=2-2b+b2=(b-1)2+1,当b=1时,c+b2+1最小,抛物线顶点纵坐标的值最小,此时c=-1,抛物线的解析式为y=-x2+2x如图,抛物线yax2c(a0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(2,0),B(1,3)(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使SPAD4SAB
12、M成立,求点P的坐标 解:(1)因为点A、B均在抛物线上,故点A、B的坐标适合抛物线方程解得:所以为所求抛物线的解析式(2)如图2,连接BD,交y轴于点M,则点M就是所求作的点设BD的解析式为,则有,解得:所以BD的解析式为;令则 所以解:(3)、如图3,连接AM,BC交y轴于点N,如图,抛物线yax2c(a0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(2,0),B(1,3)(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使SPAD4SABM成立,求点P的坐标由(2)知,OM=
13、OA=OD=2,易知BN=MN=1,易求设依题意有:,即:解得:,故 符合条件的P点有三个 如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点若OA、OB(OAOB)的长分别是方程x2-4x+3=0的两根,且DAB=45(1)求抛物线对应的二次函数解析式;(2)过点A作ACAD交抛物线于点C,求点C的坐标;(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值解:(1)解方程x2-4x+3=0得:x=1或x=3,而OAOB,则点A的坐标为(-1,0),点B的坐标为(3,0);A、
14、B关于抛物线对称轴对称,DAB是等腰三角形,而DAB=45,DAB是等腰直角三角形,得D(1,-2);令抛物线对应的二次函数解析式为y=a(x-1)2-2,抛物线过点A(-1,0),0=4a-2,得a=故抛物线对应的二次函数解析式为y=(x-1)2-2(或写成y=x2-x-)解:(2)CAAD,DAC=90,(5分)如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点若OA、OB(OAOB)的长分别是方程x2-4x+3=0的两根,且DAB=45(1)求抛物线对应的二次函数解析式;(2)过点A作ACAD交抛物线于点C,求点C的坐标;(3)在(2)的条件下
15、,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值又DAB=45,CAB=45;令点C的坐标为(m,n),则有m+1=n,(6分)点C在抛物线上,n=(m-1)2-2;(7分)化简得m2-4m-5=0解得m=5,m=-1(舍去)故点C的坐标为(5,6);(8分)如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点若OA、OB(OAOB)的长分别是方程x2-4x+3=0的两根,且DAB=45(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值解:(3)由(2)知AC=6,而AD=2DC=;过A作AMCD于点M,又AM=又SADC=SAPD+SAPCd1+d2=即此时d1+d2的最大值为4(12分)分别过C、D作CNl,DQl,垂足分别为N、Q,则CN=d1,DQ=d2.Q