1、2.4.2 2.4.2 平面向量平面向量数量积的坐标表示、模、夹角数量积的坐标表示、模、夹角一、复习引入.cos;0)2(cos)1(2babababaaaaaaababa;或 我们学过两向量的和与差可以转我们学过两向量的和与差可以转化为它们相应的坐标来运算化为它们相应的坐标来运算,那么那么怎怎样用样用呢?的坐标表示和baba二、新课学习二、新课学习1 1、平面向量数量积的坐标表示、平面向量数量积的坐标表示如图,如图,是是x x轴上的单位向量,轴上的单位向量,是是y y轴上的单位向量,轴上的单位向量,由于由于 所以所以 ijcosbabax ijy o B(x2,y2)abA(x1,y1)ii
2、jjijji .1 1 0 下面研究怎样用下面研究怎样用.baba的坐标表示和设两个非零向量设两个非零向量 =(x1,y1),=(x2,y2),则则ab1122112222121221121212,()()ax iy jbx iy ja bx iy jx iy jx x ix y i jx y i jy y jx xy y 故故两个向量的数量积等于它们对应两个向量的数量积等于它们对应坐标的乘积的和。坐标的乘积的和。即即ijx o B(x2,y2)A(x1,y1)aby.2121yyxxba 根据平面向量数量积的坐标表示,向根据平面向量数量积的坐标表示,向量的量的数量积的运算数量积的运算可可转化
3、为转化为向量的向量的坐标运坐标运算。算。;或aaaaaa2)1(221221221122222),(),2,),()1(yyxxAByxByxAyxayxayxa(则、(设)两点间的距离公式(;或则设向量的模2、向量的模和两点间的距离公式0baba(1)垂直)垂直0),(),21212211yyxxbayxbyxa则(设3、两向量垂直和平行的坐标表示0/),(),12212211yxyxbayxbyxa则(设(2)平行)平行4、两向量夹角公式的坐标运算、两向量夹角公式的坐标运算bababacos1800则),(的夹角为与设0.0.cos)180(0),(),222221212222212121
4、212211yxyxyxyxyyxxbayxbyxa,其中则,夹角为与且(设三、基本技能的形成与巩固三、基本技能的形成与巩固.),1,1(),32,1(1)1的夹角与,求已知例babababa.60,1800,21cos)31(2324231babababa,.),4,2(),3,2(2))()则(已知bababa72013.7)1(740)1,4(),7,0(2222babababababababa)()法二:()()(法一:练习:课本练习:课本P1191、2、3.例例2 2 已知已知A(1A(1,2)2),B(2B(2,3)3),C(-2C(-2,5)5),试判断试判断 ABCABC的形状
5、,并给出证明的形状,并给出证明.A(1,2)B(2,3)C(-2,5)x0y.ABC 是直角三角形三角形)1,1()23,12(AB:证明)3,3()25,12(AC031)3(1ACABACAB 练习练习2:以原点和:以原点和A(5,2)为两)为两个顶点作等腰直角三角形个顶点作等腰直角三角形OAB,B=90,求点,求点B的坐标的坐标.yBAOx),或(),的坐标为(答案:23272723B四、逆向及综合运用四、逆向及综合运用 例例3 3(1 1)已知)已知 =(4 4,3 3),向量),向量 是是垂直于垂直于 的单位向量,求的单位向量,求 .abab./)2,1(,102的坐标,求,且)已知
6、(ababa.43)5,(),0,3(3的值求,的夹角为与,且)已知(kbakba.532222222).54,53()54,53(1kbb);(,)或(,)(或)答案:(提高练习提高练习的坐标为,则点,且,、已知CABBCOBACOBOA/)5,0()1,3(1)329,3(C 2、已知、已知A(1,2)、B(4、0)、C(8,6)、D(5,8),则四边形,则四边形ABCD的形状是的形状是 .矩形矩形 3、已知、已知 =(1,2),=(-3,2),若若k +2 与与 2 -4 平行,则平行,则k=.abaabb-1作业作业课本课本9组组5(1),),9,10,11.小结小结 、理解各公式的正
7、向及逆向运用;、理解各公式的正向及逆向运用;、数量积的运算转化为向量的坐数量积的运算转化为向量的坐标运算;标运算;、掌握平行、垂直、夹角及距离、掌握平行、垂直、夹角及距离公式,形成转化技能。公式,形成转化技能。编后语 老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何抓住老师的思路。根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的问题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。根据自己预习时理解过的逻辑结构抓住
8、老师的思路。老师讲课在多数情况下是根据教材本身的知识结构展开的,若把自己预习时所理解过的知识逻辑结构与老师的讲解过程进行比较,便可以抓住老师的思路。根据老师的提示抓住老师的思路。老师在教学中经常有一些提示用语,如“请注意”、“我再重复一遍”、“这个问题的关键是”等等,这些用语往往体现了老师的思路。来自:学习方法网 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的内容,以免顾此失彼。来自:学习方法网 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。2022-8-9最新中小学教学课件162022-8-9最新中小学教学课件17谢谢欣赏!