1、随机边界模型Stochastic Frontier Models连玉君中山大学 岭南学院2013年12月9日 New Course:http:/baoming.pinggu.org/Default.aspx?id=93 提纲 SFA 简介 截面SFA模型 面板SFA模型 双边SFA模型I.SFA 简介产出边界yx实际产出最大产出SFA 的模型设定思想(,)1(18.1):;:;()(:)f zfTE qzzzqq实际产出理论产出要素投入(,)(18.2)iiiqf zTE2(,)(18.3)(exp)0,()iiiiivvqf zTENv,(,)exp()(18.4)Stochastic Fi
2、iSFirontierivyTEf x ln()ln(,)(18.5),ln()0(01)iiiiiiiqf zvwhuerTETeEu exp()(18.6)iiuTE SFA 图示y1Source:Porcelli(2009)实证分析中的模型设定01lnln()(18.)7kiijijjizvuqQ:两个干扰项如何处理?22Normal-Normal model(hN):,half(0,),(0,)(18.9)iiiiiviuyvuviuid Nid Nix22Normal-Normal model(tN):,(0,),(,)(18.10)truncatediiiiiviuyvuviid
3、Nuiid Nx2Normal-model(Exp):,(0,),()(18.11)Exponential iiiiiviuyvuviid Nuiid Expx,(18.8)iiiiiiyvuxNote:假设 v,u 不相关,且二者与 x 也不相关正态分布和半正态分布的密度函数图u=0.80.00.20.40.60.81.0Density-4.0-3.0-2.0-1.00.01.02.03.04.0 xui=|Ui|N+(0,u2)Ui N(0,u2)指数分布的密度函数图 u=0.2 u=0.5 u=1f(u)=exp(u)=1/u012345Density0.00.51.01.52.0uf(
4、u)半正态分布和指数分布对比0.00.40.81.21.62.0Density0.00.51.01.52.02.53.0uExponentialHalf-Normal效率的估计Jondrow,Lovell,Materov and Schmidt(1982),JLMS82 Battese and Coelli(1988),BC88(1()+(18.25)iiiiiiiiE uuTEE 211exp(18.26exp)12iiiiiiTEuE Review:linear FE v.s.RE)FE(Fixed Effect Model)RE(Random Effect Model)Pooled OL
5、SII.面板随机边界模型Panel SFA2,(0,)itititiityNx22,(0,),(0,)iiititiaittyNNx02,(0,)ititittixyN可能的通用模型:ai:公司个体效应,N-1 个公司虚拟变量;i:不随时间变化的常规干扰项;vit:随时间变化的常规干扰项;+i:不随时间变化的无效率项(persistent component)u+it:随时间变化的无效率项(transient component)II.面板随机边界模型Panel SFA*,itiittyy*iittiy xiitittiivuPanel SFA:Pooled SFA model22,(0,),
6、(18.31)(0,)ititititSitvtFiuyvuviid Nuiid Nx Pitt and Lee(1981),PL81 Panel SFA:随机效应模型(RE-SFA)效率不随时间变化22,(0,),(18.31)(0,)ititititviiuuuyvvNNx Schmidt and Sickles(1984),SS84 TE的估计Panel SFA:固定效应模型(FE-SFA)效率不随时间变化,(18.31)PL81,itititiyvux(18)E,F.34itititiiiyvux,(18.36)max,MjjiMiu,(18JLexMS8p)2.37iiTEu Cor
7、nwell,Schmidt and Sickles(1990),CSS90 Lee and Schmidt(1993),LS93Panel SFA:效率时变模型212,=,(18.38)ititititiitiiityvttuux,(18.40Note):()(iitititittiuug tug t is year dummysvie x Battese and Coelli(1992),BC92,应用非常广泛Panel SFA:效率时变模型=-0.1 decreasing=0.1 increasing0.00.20.40.60.81.0Inefficiency Effect12345678
8、910Time Perioduit()exp,(18.42,),itiititiiiittyvuugtTuut x Greene难题(Greene Problem)True-Model:Estimate-Model:Implications:TE 的估计值将是有偏的 把那些个体异质性(公司文化,CEO特征等)影响产出的因素都归为“无效率项”了Panel SFA:True FE SFA(18.43)ititititinEffSFiyvux 0(18.44)itititinEffSFityuvx Greene(2005),TFE 估计方法:蛮力法(brute force approach)直接估
9、N 个公司虚拟变量和 k 个 参数即可 需要采用一些特殊的数值计算技巧Panel SFA:True FE SFA22(18.45)1(0,),()(0,)iiititititinEffSFitvituyvuNvNuNx 个公司虚拟变量:Greene(2005),TRE 估计方法:MLE 相对于传统的线性 RE 模型,只是增加了一个参数而已Panel SFA:True RE SFA222(18.45)(0,),(0,),(0,()iiititititinEffSFitvituyvuNvNuNx Tsionas and Kumbhakar(2013),G-TRE 对比:TREPanel SFA:G
10、eneralized TRE SFA()(18.47)ititSFitiitinEiffyuvx ()(18.45)ititinEffSFititiuyvx Wang and Ho(2010),Scaling-TFEgit:scaling function,是公司特征变量(zit)的函数git:可以使非效率具有异质性;git:缩放性质使得我们可以用FD或组内去心去除个体效应 iPanel SFA:Scaling-TFE SFA2(18.52)()(,)itititiiititiutittiigyvuzguuufNx,Ahn and Sickles(2000),Dynamic-SFAi:用于衡量
11、第 i 家公司对非效率项的调整能力(speed)i 越大,表明公司克服其非效率行为的能力越强Panel SFA:dynamic SFA1(18.53)(1)iiitititititttiuuyvux,异质性 SFA:Heterogeneous SFA 基本思想随机边界效率的影响因素*不确定性的影响因素0.511.52y012345x模型设定思想异方差的设定(不确定性)均值的设定(无效率水平)异质性 SFA:Heterogeneous SFA22,(0,),(18.53)(,)iiiiiiviuiiyvuvNuN x2exp()(18.57)v iitz2exp()(18.58)uiitw(18
12、.59)iits 基本思想双边随机边界模型:two-tier SFA随机边界*Over*Under0.511.52y012345x 模型设定 效率的估计双边随机边界模型:two-tier SFA222(18.6().(0,).(,).(,0)iiiSFinEffivwiwiiuiuyvvi i d Ni i d Expi i d Ewuwpux x (18.66)%-invest(1|)%-invest(1|)iiiiwuundeoEeerEverThanksNew Course:http:/baoming.pinggu.org/Default.aspx?id=93 References 1A
13、igner,D.,C.Lovell,P.Schmidt,1977,Formulation and estimation of stochastic frontier production function models,Journal of Econometrics,6(1):21-37.Arellano,M.,S.Bond,1991,Some tests of specification for panel data:Monte carlo evidence and an application to employment equations,Review of Economic Studi
14、es,58(2):277-297.Arellano,M.,O.Bover,1995,Another look at the instrumental variable estimation of error-components models,Journal of Econometrics,68(1):29-51.Battese,G.,T.Coelli,1992,Frontier production functions,technical efficiency and panel data:With application to paddy farmers in india,Journal
15、of Productivity Analysis,3(1):153-169.Battese,G.E.,T.J.Coelli,1988,Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data,Journal of Econometrics,38(3):387-399.Battese,G.E.,T.J.Coelli,1995,A model for technical inefficiency effects in a stochas
16、tic frontier production function for panel data,Empirical Economics,20(2):325-332.Belotti,F.,S.Daidone,G.Ilardi,V.Atella,2013,Stochastic frontier analysis using stata,Stata Journal:forthcoming.Chang,S.K.,Y.Y.Chen,H.J.Wang,2012,A bayesian estimator for stochastic frontier models with errors in variab
17、les,Journal of Productivity Analysis,38(1):1-9.Chen,N.-K.,Y.-Y.Chen,H.-J.Wang,2011,Asset prices and capital investmenta panel stochastic frontier approach,Working Paper.References 2Coelli,T.,D.Prasada Rao,G.E.Battese.An introduction to efficiency and productivity analysisM.Boston:Kluwer Academic Pub
18、lishers 1998.Colombi,R.,G.Martini,G.Vittadini,2011,A stochastic frontier model with short-run and long-run inefficiency,Working Paper,Department of Economics and Technology Management,Universita di Bergamo,Italy.Emvalomatis,G.,2012,Adjustment and unobserved heterogeneity in dynamic stochastic fronti
19、er models,Journal of Productivity Analysis,37(1):7-16.Feng,G.,A.Serletis,2009,Efficiency and productivity of the us banking industry,19982005:Evidence from the fourier cost function satisfying global regularity conditions,Journal of Applied Econometrics,24(1):105-138.Fried,H.O.,C.Lovell,S.S.Schmidt.
20、2008,Efficiency and productivityC,in H.O.Fried,C.Lovell,S.S.Schmidt eds,The measurement of productive efficiency and productivity change(Oxford University Press,New York)3-92.Greene,W.,2005a,Fixed and random effects in stochastic frontier models,Journal of Productivity Analysis,23(1):7-32.Greene,W.,
21、2005b,Reconsidering heterogeneity in panel data estimators of the stochastic frontier model,Journal of Econometrics,126(2):269-303.Greene,W.,2008,The econometric approach to efficiency analysis,The Measurement of Productive Efficiency and Productivity Change,1(5):92-251.References 3Habib,M.,A.Ljungq
22、vist,2005,Firm value and managerial incentives:A stochastic frontier approach,Journal of Business,78(6):2053-2094.Hadri,K.,1999,Estimation of a doubly heteroscedastic stochastic frontier cost function,Journal of Business&Economic Statistics,17(3):359-363.Huang,C.J.,J.-T.Liu,1994,Estimation of a non-
23、neutral stochastic frontier production function,Journal of Productivity Analysis,5(2):171-180.Jondrow,J.,K.Lovell,I.Materov,P.Schmidt,1982,On the estimation of technical inefficiency in the stochastic frontier production function model,Journal of Econometrics,19(2-3):233-238.Koutsomanoli-Filippaki,A
24、.,E.C.Mamatzakis,2010,Estimating the speed of adjustment of european banking efficiency under a quadratic loss function,Economic Modelling,27(1):1-11.Kumbhakar,S.,F.Christopher,2009,The effects of bargaining on market outcomes:Evidence from buyer and seller specific estimates,Journal of Productivity
25、 Analysis,31(1):1-14.Kumbhakar,S.,G.Lien,J.B.Hardaker,2012a,Technical efficiency in competing panel data models:A study of norwegian grain farming,Journal of Productivity Analysis:1-17.References 4Kumbhakar,S.,C.Lovell.Stochastic frontier analysisM.Cambridge:Cambridge University Press,2000.Kumbhakar
26、,S.,R.Ortega-Argils,L.Potters,M.Vivarelli,P.Voigt,2012b,Corporate r&d and firm efficiency:Evidence from europes top r&d investors,Journal of Productivity Analysis,37(2):125-140.Kumbhakar,S.C.,1990,Production frontiers,panel data,and time-varying technical inefficiency,Journal of Econometrics,46(1):2
27、01-211.Kumbhakar,S.C.,S.Ghosh,J.T.McGuckin,1991,A generalized production frontier approach for estimating determinants of inefficiency in us dairy farms,Journal of Business&Economic Statistics,9(3):279-286.Kumbhakar,S.C.,C.F.Parmeter,E.G.Tsionas,2013,A zero inefficiency stochastic frontier model,Jou
28、rnal of Econometrics,172(1):66-76.Kumbhakar,S.C.,E.G.Tsionas,2011,Some recent developments in efficiency measurement in stochastic frontier models,Journal of Probability and Statistics,2011:forthcoming.Lai,H.-p.,C.J.Huang,2011,Maximum likelihood estimation of seemingly unrelated stochastic frontier
29、regressions,Journal of Productivity Analysis:1-14.References 5Lee,Y.H.,P.Schmidt.1993,A production frontier model with flexible temporal variation in technical efficiencyC,in H.Fried,C.Lovell,S.Schmidt eds,The measurement of productive efficiency:Techniques and applications(Oxford University Press,O
30、xford,UK)237-255.Lian,Y.,C.-F.Chung,2008,Are chinese listed firms over-investing?,SSRN working paper,Available at SSRN:http:/ den Broeck,1977,Efficiency estimation from cobb-douglas production functions with composed error,International Economic Review,18(2):435-444.Peyrache,A.,A.N.Rambaldi,2012,A s
31、tate-space stochastic frontier panel data model,working Paper.Pitt,M.M.,L.-F.Lee,1981,The measurement and sources of technical inefficiency in the indonesian weaving industry,Journal of Development Economics,9(1):43-64.Tsionas,E.G.,S.C.Kumbhakar,2013,Firm-heterogeneity,persistent and transient techn
32、ical inefficiency:A generalized true random effects model,Journal of Applied Econometrics:forthcoming.References 6Wang,E.C.,2007,R&d efficiency and economic performance:A cross-country analysis using the stochastic frontier approach,Journal of Policy Modeling,29(2):345-360.Wang,H.,2003,A stochastic
33、frontier analysis of financing constraints on investment:The case of financial liberalization in taiwan,Journal of Business and Economic Statistics,21(3):406-419.Wang,H.J.,C.W.Ho,2010,Estimating fixed-effect panel stochastic frontier models by model transformation,Journal of Econometrics,157(2):286-
34、296.Ylou,C.,B.Larue,K.C.Tran,2010,Threshold effects in panel data stochastic frontier models of dairy production in canada,Economic Modelling,27(3):641-647.白俊红,江可申,李婧,2009,应用随机前沿模型评测中国区域研发创新效率,管理世界,(10):51-61.林伯强,杜克锐,2013,要素市场扭曲对能源效率的影响,经济研究,(9):125-136.刘海洋,逯宇铎,陈德湖,2013,中国国有企业的国际议价能力估算,统计研究,(5):47-53.卢洪友,连玉君,卢盛峰,2011,中国医疗服务市场中的信息不对称程度测算,经济研究,(4):94-106.Whats More http:/baoming.pinggu.org/Default.aspx?id=93