1、 数学思维的类型 思维是人脑对客观事物的本质及其内在规律性联系概括的和间接的反映。思维有两个最显著的特征,一是概括性,二是间接性。思维的概括性思维的概括性 思维的间接性思维的间接性 数学思维是人脑和数学对象交互作用并按照一般的思维规律认识数学本质和规律的理性活动。具体来说,数学思维就是以数和形及其结构关系为思维对象,以数学语言和符号为思维的载体,并以认识发现数学规律为目的一种思维。数学思维既从属于一般的人类思维,具有一般思维的特征,同时由于数学及其研究方法的特点,数学思维又具有不同于一般思维的自身特点,表现在思维活动是按客观存在的数学规律进行的,具有数学的特点与操作方式。特别是作为思维载体的数
2、学语言的简约性和数学形式的符号化、抽象化、结构化倾向决定了数学思维具有不同于其他思维的独特风格。数学思维主要具有概括性、整体性、相似性和问题性等特点。概括性概括性 整体性整体性 数学思维的整体性主要表现在它的统一性和对数学对象基本属性的准确把握。数学科学本身是具有统一性的,人们总是谋求新的概念、理论,把以往看来互不相关的东西统一在同一的理论体系中。数学思维的统一性,是就思维的宏观发展方向而言的,它总是越来越多地抛弃对象的具体属性,用统一的理论概括零散的事实。这样既便于简化研究,又能洞察到对象的本质。数学思维中对事物基本属性的把握,本质上源于数学中的公理化方法。这种整体性的思维方式对人们思考问题
3、具有深远的影响。相似性相似性 数学思维的相似性是思维相似律在数学思维活动中的反映。数学思维的相似性普遍存在,在创造性思维活动中发挥着重要作用。数学思维中到处渗透着异中求同、同中辨异的比较、分析过程。数学中的相似表现有几何相似、关系相似、结构相似与实质相似、静态相似与动态相似等。数学思维中的联想、类比、归纳和猜想等都是运用相似性探求数学规律、发现数学结论的主导方法。对相似因素和相似关系的认识能加深理解数学对象的内部联系和规律性,提高思维的深刻性,发展思维的创造性。因此,相似性是数学思维的一个重要特征。问题性问题性 数学思维的问题性是与数学科学的问题性相关联的。问题是数学的心脏,数学科学的起源与发
4、展都是由问题引起的。由于数学思维是解决数学问题的心智活动,它总是指向问题的变换,表现为不断地提出问题、分析问题和解决问题,使数学思维的结果形成问题的系统和定理的序列,达到掌握问题对象的数学特征和关系结构的目的。因此,问题性是数学思维目的性的体现,解决问题的活动是数学思维活动的中心。这一特点在数学思维方面的表现比任何思维都要突出。因此,80年代世界数学教育将“问题解决”作为其主要任务是有道理的。数学逻辑思维是指借助数学概念、判断、推理等思维形式,通过数学符号或语言来反映数学对象的本质和规律的一种思维。数学形象思维是指借助数学形象或表象,反映数学对象的本质和规律的一种思维。在数学形象思维中,表象与
5、想象是两种主要形式,其中数学表象又是数学形象思维的基本元素。数学表象数学表象数学想象数学想象 再造性想象 再造性想象是根据数学语言、符号、数学表达式或图形、图表、图解等提示,经加工改造而形成新的数学形象的思维过程。再造性想象有两个特征:一个是生成的新形象虽未感知过,但并非完全由自己创造或创新,是根据别人描述或者示意再造出来的;一个是新形象是头脑中原有表象经过加工改造而成的,其中包含着个人知识与理解能力的作用,因此又有创造的成分。创造性想象 创造性想象是一种不依靠现成的数学语言和数学符号的描述,也不依据现成的数学表达式和数学图形的提示,只依据思维的目的和任务在头脑中独立地创造出新的形象的思维过程
6、。思维结果的新颖、独特是创造性想象的主要特征。数学直觉思维是以一定的知识经验为基础,通过对数学对象作总体观察,在一瞬间顿悟到对象的某方面的本质,从而迅速作出估断的一种思维。数学直觉思维是一种非逻辑思维活动,是一种由下意识(潜意识)活动参与,不受固定逻辑规则约束,由思维主体自觉领悟事物本质的思维活动。因此,非逻辑性是数学直觉思维的基本特征,同时数学直觉思维还具有直接性、整体性、或然性、不可解释性等重要特征。直接性直接性 整体性整体性 或然性或然性 不可解释性不可解释性 数学思维的智力品质数学思维的智力品质 1、数学思维的广阔性与深刻性 思维的广阔性是指思路开阔,善于全面地考虑问题表现为在思考问题
7、时,能全面地从多方面看问题,着眼于事物之间的联系和关系,照顾到问题各方面的条件 思维的广阔性是以丰富的多方面的知识经验为前提的,只有具备大量的丰富的知识经验,才能从事物的不同角度、不同方面全面地去考虑问题,避免狭隘性和片面性 思维的深刻性是指善于深入地思考问题,善于从纷繁复杂的表面现象中发现最本质最核心的问题 它表现为思维活动的深刻程度和抽象程度,善于概括归纳,逻辑抽象性强,善于分清事物的实质,洞察事物的本质,系统地展开理性活动,善于深入理解现象和现象发生的原因,发现他人没有发现过的问题,并能预见事物的发展过程,善于系统地深入地揭示事物的本质和内在规律性关系具有思维深刻性品质的学生,善于从简单
8、的、普通的、司空见惯的现象中,看出问题,从中揭示出事物重要的规律来2 2、数学思维的独立性与批判性、数学思维的独立性与批判性 思维的独立性是指善于独立思考、善于独立发现问题和解决问题思维独立性是人们进行创造活动的前提,也是创新人才必备的思维品质思维的独立性突出地表现为三个特点:独特性、发散性和新颖性 思维的独立性是以思维的批判性为前提的思维的批判性是指有分析地估价思维材料和严密审慎地检查思维过程的品质在解题过程中,思维的批判性特征在于有能力评价解题思路选择得是否正确以及评价这种思路可能导致的结果如何在教学过程中,学生思维的批判性,表现为一种趋向,愿意进行各种各样的检验,检验已得到的粗略结果以及
9、对归纳、分析和直觉的推理过程进行检验等 数学思维的批判性品质常表现为分析性、策略性、全面性、独立性、正确性五方面的特点,这些特点在学生解题过程中表现得尤为突出具体地,(1)分析性,即在数学思维活动中不断地分析解决问题所依据的条件,反复验证业已拟定的假设、计划和方案;(2)策略性,即能够根据当前任务的需要,调动自己已有的知识经验,将它们组织为相应的解题策略或手段,并使它们在解题中发挥作用;(3)全面性,即在数学思维活动中能够客观地从各个方面考虑问题,把握问题的进展情况,善于进行自我评价,坚持正确计划,随时修改错误方案;(4)独立性,即不为情景性暗示所左右,不迷信权威,敢于对权威的观点提出疑问,不
10、人云亦云、盲目附和;(5)正确性,即思维过程严谨,条理清晰,思维结果正确,结论实事求是3 3、数学思维的灵活性与敏捷性、数学思维的灵活性与敏捷性 数学思维灵活性主要是指摆脱旧的思维序列的束缚影响,机动灵活地从一种思维过程转向另一种思维过程 这种思维的灵活性表现为能够根据客观事物的发展与变化,及时调整自己的思路,改变已有的思维过程,寻找新的解决问题的方法也就是说,数学思维的灵活性主要是学生在数学思维活动中,思考的方向多、过程活、思维技巧能够适时转换,即思维的应变能力强 数学学习中思维灵活性往往表现在根据具体条件而确定解题方向,并能随着条件的变化而有的放矢地转化解题方法;表现在从新的高度、新的角度
11、看待已知知识;还表现在从已知的数学关系中看出新的数学关系思维的灵活性与思维的发散性有一致的地方,“一题多解”常作为训练发散思维和数学思维灵活性的有效方法 思维的灵活来自于求异思维,而求异思维又来自于迁移因为灵活性越大,思维的发散性越好,越能多解,说明迁移的效果越显著 思维的敏捷性是指思维过程中正确前提下思维的迅速和简捷有了思维的敏捷性,在处理和解决问题的过程中就能根据具体情况进行积极思考,正确做出判断并迅速做出选择这就要求人的认知结构系统化、结构化,具有清晰性、稳定性和可利用性,一旦需要便能迅速而正确地进行检索和提取 在数学学习中,思维的敏捷性主要表现为能够缩短运算环节和推理过程,而这又有赖于
12、在正确前提下的速度训练经过练习,从中总结经验,进而概括出规律,并通过应用而达到熟练的程度,从而产生思维的敏捷性因此,敏捷性又与概括性紧密相联,推理的缩短取决于概括,“能立即进行概括的学生,也能立即进行推理的缩短”第五章第五章 数学课堂教学艺术数学课堂教学艺术 数学课堂教学艺术概说 数学教学语言艺术 导入的艺术 提问的艺术 教学情境的创设艺术 数学课堂教学艺术,是指数学教师综合运用数学教学论、数学学习论等理论,遵循数学教学规律和学生的认知特点,在数学教学活动中,以富有个性特色的独特的方式方法,创造性地组织数学教学,使教学达到最佳效果的精湛的教学技巧。它是教师学识和智慧的结晶,是教师创造性地运用教
13、学方式方法的升华,是教学合规律性与教学独创性的完满结合,是求美和求真的和谐统一。而这正是数学教学艺术的本质所在。教育家第斯多惠曾指出:“教师必须有独创性”。数学教学的复杂性决定了教师劳动的创造性。教师面对的是属于变化的千差万别的学生,不可能用刻板的公式去解决课堂上出现的各种问题,无论是教案、内容处理、教法选择、教学手段的应用,教学过程的组织,数学解题的指导,都需要教师发挥自己的独创性。课堂教学是教师通过口头表述、行为动作和面部表情等途径向学生传递知识信息的活动,这种活动本身就是一种表演艺术。所以,教育家罗伯特特拉佛斯认为“教学之所以称为独具特色的表演艺术,它区别于其他任何表演艺术,这是由教师与
14、那些观看表演的人的关系所决定的。”毫无疑问,掌握较高课堂教学艺术的教师,就能够取得较好的教学效果。数学教学作为一门科学,主要运用理性,以理服人;作为一门艺术,则主要运用情感,以情感人,具体表现在各种情感手法的运用上。教学艺术水平高的数学老师,在教学中能表现出情感性的教态,创设出情感性的情境,挖掘出教学内容中的情感性因素,置学生于一般情感激发、陶冶的气氛中。情感不仅有动力作用,而且能消除疲劳、激发创造,学生可乐此不疲,思维敏捷灵活,富有创造性。数学课堂教学既是有意识有计划和有章可循的,有时又是即兴的和应变的。经验丰富的教师在教学过程中犹如演员进入艺术创作的角色,用自己的直觉和灵感即兴发挥。这种即兴发挥不在原来教学方案之内,但顺乎教学境境之自然或必然,有锦上添花之功效。教学艺术的灵活性还表现在处理课堂教学中长沙的突发性问题上,这常常出自学生意外的提问。教师对这些问题作出的恰当而迅速的回答,就是一种即兴发挥。即兴发挥是教师根据直觉进行大胆、简捷的推论、选择和判断。教学艺术的灵活性与教学的计划性并不矛盾,即使是周密的教学计划,真正运用或执行起来也需要有灵活性和创造性。因为,任何计划无论多么周密和精确,都不可能准确预测将要发生的一切具体细节,有计划而又不拘泥于计划,善于创造,这就是课堂教学的灵活性。1、高效功能 2、激励功能 3、美育功能 4、整体功能