1、大规模光电子集成及其应用大规模光电子集成及其应用提纲一、SPM实验室和硅基光电子学二、关键科学问题和主要研究内容三、可能取得的重大进展和重要应用前景SPM team at PKU,May,2018Research Funding:MOST programs(973,863,SKL),NSFC programs(International,Major,General),Provincial programs,and Industrial programs(Huawei,ZTE,Delta).Collaborators:MIT,Stanford,CalTech,GaTech,University
2、of Southampton,University of Tokyo,硅基光电子学是探讨微米/纳米级光子、电子、及光电子器件的新颖工作原理,并使用与硅基集成电路技术兼容的技术和方法,将它们集成在同一硅衬底上的一门科学。硅基光电芯片Light SourceLight GuidingIntegrationLight ModulationLight Detection光电子器件的硅基化及大规模集成http:/ for Data Transmissions提纲一、SPM实验室和硅基光电子学二、关键科学问题和主要研究内容三、可能取得的重大进展和重要应用前景关键科学问题1.提高发光效率2.增强电光效应3.
3、扩展应用波长4.降低系统能耗5.片上异质集成主要研究内容 微纳米范围之内的光电相互作用及影响 微纳范围内光-光,光-热、光-机,光-磁,光-生化等的传感行为 微纳光电器件的计算机模拟 微纳光电器件的耦合 微纳传感器件的集成 微弱信号的探测与放大 微纳薄膜技术光 电Photonics Electronics CMOS工艺(纳米光刻,聚焦离子束加工,高精度等离子体工艺.)Silicon based on-chip lasersDesirable on-chip lasers for optoelectronic integrationEmitting 1310 or 1550 nm Electri
4、cally pumped laser CMOS process compatibleCandidates Er-related light sourceGe-on-Si laserIII-V-based Si laserWorkingmechanismUsing Er as an atomicemitting centerEnhance emitting efficiencyvia bandgap engineeringUsing III-V materialas gain mediumSiOx:Er;SiNx:Er;Er silicatesInAlGaAs QW;InGaAsP QW;InA
5、s/GaAs QDGainmaterialGe;GeSn alloyLarge gain spectrum;Material and processcompatibility with Sitechnology;CMOS compatiblefabrication process;Wavelength stabilityHigh gain and outputoptical power;Goodstructure design flexibilityAdvantageChallengeLow EL efficiency;Obtain net gainGe materials quality;U
6、ltrahigh threshold currentFabrication compatibility;cost reductionZ.Zhou et al,“On-chip light sources for silicon photonics”,Light:Science&Applications(2015)4,e358.Energy ConsumptionZ.Zhou,et al,Lowering the energy consumption in silicon photonicdevices and systems,Photonics Research 3,B28-B46(2015)
7、.Reviews current optical linkperformance in terms of energy andinsertion lossProposes methods for device-leveloptical link energy reduction andinsights into on-chip lasersLow energy consumption silicon optical modulatorA complete analytical theory,energy consumption analysis,and eye diagrams onabsol
8、ute scales for lumped modulators.The results show that silicon modulationenergy as low as 80.8 and 21.5 fJbit can be achieved at 28 Gbd under 50 and 10 impedance drivers,respectively.A 50 Gbd modulation is also shown to be possible.X.Li,et al,Photon.Res.Vol.5,Issue 2,pp.134-142(2017).Athermal filter
9、Athermal filter:The athermal performance has beenmeasured to be -5 pm/K while the minimum insertion loss isonly 0.4 dB with a device dimension of 170 mm 580 m m.Q.Deng,L.Liu,R.Zhang,X.Li,J.Michel,and Z.Zhou,Opt.Express 24,29577-29582(2016)On-chip plasmonic waveguide optical waveplateDesign and fabri
10、cation(a)3D view of the polarization rotating device integrated in-line with a standardSi wire waveguide of 400 nm width and 250 nm height.(b)Polarization rotationsegment integrated at the output end of a laser to generate circular polarization.(d)Scanning electron micrograph(SEM)showing the device
11、in-line integratedwith a Si wire waveguide.L.Gao,Y.Huo,K.Zang,S.Paik,Y.Chen,J.Harris,and Z.Zhou,Sci.Rep.5,15794,(2015).Polarization-independent directional coupler(PIDC)The beat lengths for TE and TM mode are tailored to be equal bythe refractive index engineering of the subwavelength grating(SWG),l
12、eading to a polarization-independent directional coupler(PIDC).Compared to other schemes,this SWG based one is compact,CMOScompatible,and is the first experiment result of PIDC.SWG DCL Horizontal slot DCnodd2 nevenfootprintHybrid plasmonic DCcompatibilityEquivalent homogeneous mediumEffective refrac
13、tive index engineeringL.Liu,Q.Deng and Z.Zhou,Opt.Lett.41,1648(2016).Low insertion loss(TE:0.11dB,TM:0.15dB)Less polarization sensitivity(CE difference 0.04 dB)Broad bandwidth(0.5dB bandwidth45 nm)Short length(8.4 m),minimum feature size 100 nm,easy to fabricateThe first experimental result of a ON-
14、CHIP polarization independent DCPolarization beam splitter(PBS)The beat length for TE mode shrinks 20-fold by the refractiveindex engineering of the subwavelength grating(SWG),half that ofTM mode,leading to a high extinction ratio(ER).Meanwhile,Thedispersion engineering of SWG releases the wavelengt
15、h dependencegreatly.Finally,high ER(20 dB)and broad bandwidth(100 nm)arerealized simultaneously,which is difficult for conventional PBSs.L.Liu,Q.Deng and Z.Zhou,Opt.Lett.41,5126(2016).Arbitrary splitting ratio MMI power splitter Characteristics:Arbitrary splitting ratio:100:0 50:50;Small footprint:1
16、.5 m1.82.8 m;Broadband:Splitting ratio variation 2%(1520-1580 nm)Low excess loss(0.5dB):Comparable to conventionalMMI.Q.Deng,L.Liu,X.Li,and Z.Zhou,Opt.Lett.39,5590(2014)Strip-slot waveguide converterPerformance:Strip-slot waveguide coupling though this modeconverter has a measured efficiency of 97%(
17、0.13 dB)for awavelength range of 130 nm(14501580 nm).,and thedimensions are as small as 1.24 m 6 m.Q.Deng,L.Liu,X.Li,and Z.Zhou,Opt.Lett.39,5665(2014).提纲一、SPM实验室和硅基光电子学二、关键科学问题和主要研究内容三、可能取得的重大进展和重要应用前景OFC 2018:Silicon PhotonicsOFC Milestone:In its 40th Anniversary in 2015,developments in Internet of
18、 Things(IoT),siliconphotonics and SDN drive discussions inconference and on exhibit floorMore Silicon Photonics ProductsThe Silicon Photonics Integration is getting better:smaller package and higher data rateA 128 Gb/s PAM4 Silicon Microring Modulator(Intel PDP paper)国际最新进展1、IEDM 2018ODI subcommitte
19、e,Tutorial,session,and specialsession2、OFC 2019Workshop on Integrated chip for data cebterapplications.Many silicon Photonics and Silicon PhotonicsModulators related sessions in the program abstracts发展趋势1.更多基础研究:片上/片下光源,线性/非线性器件,节能机理,器件小型化2.更高传输速率:单通道100G,coherent or WDM PAM-4 200G,400G,3.更大规模片上集成:零
20、改变CMOS工艺,45纳米工艺,异质集成4.更多厂商加入:完善的产业链,覆盖短途和长距硅基光电子的早期应用领域高速计算机网络硅基光电子技术能够有效解决大数据时代面临的问题:高速通讯 海量数据高速通信网络高速物联网基于硅基光电子技术的数据中心Optical Phase Arrays2D imaging OPAsRecord Array Scale:64x64ord active pixel:9 m x 9 mFully integrated hybrid 2D OPA chipSun J,Timurdogan E,Yaacobi A,et al.Nature,20132D beam steeri
21、ng OPAs(grating waveguides array)Integrating hybridtunable laser,SOA,MMI,EO phaseshifters,gratingarray,photodiodeson a single chipChannel Num:128Sweeping angle:51Resolvable points:60,000Beam width Divergence:0.14Hulme,J.C.,et al.Optics express 2015.Hutchison,David N.,et al.Optica,2016.Quantum Photon
22、ics:Bulk integratedSilicon photonics has the potential to achieveon-chip quantum photonic system with allcomponents integrated.integrated silicon quantum photonics:i.pump input and splitter,ix.MMI coupler,iiiii.photon-pair source,x.waveguide crossing,v.pump removal filter,xi.single-photon detector,a
23、rXiv:1006.4743v1vii.WDM,xii.Grating coupler,ii.thermal phase tuner,xiii.control and logic IC.IEEE J.Quantum Elect.22,6700113(2016).Metamaterial-inspired Silicon PhotonicsMetamaterials are engineered structures designed to interact with EM field ina desired fashion.Silicon metamaterials emerged popul
24、ar for high refractiveindex,low loss and the optical properties can be tailored very effectively andflexibly by this micro-control.1.Silicon Metasurfaces:2D nanostructures;light is at normal or near-normalincidence to the nanostructuredsurface)2.Bulk Silicon Metamaterials:1/2/3D nanostructures;light
25、 is along the directions inwhich the building blocks arearranged)I.Staude and J.Schilling,Nat.Photonics 11,5(2017).(g,h)Silicon Metasurfaces(i-l)Bulk Silicon MetamaterialsSilicon Photonics for MID-IRThermal-optical modulators inThermal-optical modulators inGe-on-Si at 5 mSOI at 3.8 mMalik A,Dwivedi
26、S,Van Landschoot L,et al.Opticsexpress,22,23,28479-28488(2014).Nedeljkovic M,Stankovic S,Mitchell C J,et al.IEEEPhoton.Technol.Lett.,2014,26(13):1352-1355.Electro-optical modulators inElectro-optical modulators inGeOI at 2 mGe-on-Si at 3.8 mKang J,Takenaka M,Takagi S.Optics Express,2016,24(11):11855
27、-11864Tiantian L,Nedeljkovic M,Nannicha H,et al.International Coference on Group IV Photonics 2017Microring SensorResonance enhanced sensingAnalyte2Rneff=mIs ,ORs,SENSITIVITY:nnccBasic microring sensor optimizationMaximal Sensivitity:transmission coefficient approaches unityself coupling coefficient
28、t equals 2Z.Xia,Y.Chen,and Z.Zhou,IEEE J.Quant.Electron.,44(1),100-107,2008.Multi-resonance microring sensorVernier Effect in the resonance shiftLarge overlap-resonance shiftLarge dynamic rangeHigh Sensitivity(shift 0.31nm for 10-6RIU)H.Yi,D.S.Citrin,Y.Chen,and Z.Zhou,Appl.Phys.Lett.,95,191112,2009.
29、Fano resonance single microring sensorFano resonanceDual-resonance couplingAsymmetric resonanceSOI microring-sharpslopeHigh Sensitivity(10-8RIU atQ=104)H.Yi,D.S.Citrin,and Z.Zhou,Opt.Expr.,18(3),2967-2972,2010.Coupling-induced microring sensorAnalyte affect the coupling element!vvRMRRMRTypeTypeMicro
30、ring enhancedcoupling elementCoupling coefficient change Output intensity changeNo ultra-narrow lightsource neededHigh sensitivity 10-8RIUH.Yi,D.S.Citrin,and Z.Zhou,J.Society Americ.B.,28(7),1611-1615,2011.Athermal Optical SensorSpectrum shift(Temperature induced)Extinction rationchange(Designedmodu
31、lation induced)Thermal-induced changeAnalyte-induced changeH.Yi,D.S.Citrin,and Z.Zhou,IEEE J.Quant.Electron.,47(3),354-358,2011.Application-Glucose sensingY.Chen,Z.Li,H.Yi,and Z.Zhou,Front.Optoelectron.China,2(3),304-307,2009.Glucose SensitivitySidewall roughness ssDNA in solutionsUtmost sensitivity
32、 wasnot revealed by theexperiment,since itmight related to thenumber of surfacessDNA probes and thedetecting solutionconcentration.Corresponding curve between resonancewavelength shifts and Bacillus Anthracis ssDNAconcentrations硅基光电子可能的进展和重要应用前景领域:5G,微波光电子学,天体物理学,量子,军事,传感,消费,内容:集成系统,核心模块,单个器件,进程:像微电
33、子发展的早期阶段一样,正在向大规模集成和多样化发展总结 所谓硅基光电子学,就是结合光的极高带宽、超快速率和高抗干扰特性以及微电子技术在大规模集成、低能耗、低成本等方面的优势,研究和开发以光子和电子为信息载体的硅基大规模光电集成技术。其核心内容就是研究如何将光电子器件小型化、“硅片化”并与纳米电子器件相集成,即利用硅或与硅兼容的其他材料,应用硅工艺平台,在同一硅衬底上同时制作若干微纳量级,以光子和电子为载体的信息功能器件,形成一个完整的具有综合功能的新型大规模光电集成芯片。虽然硅材料在光电效应方面存在着“先天不足”,而光子器件在尺寸方面也“衍射受限”,但通过能级工程、量子调控、表面技术、以及纳米技术,这些传统观念已被一一突破。新的硅基光电子器件与技术不断出现,硅基光电子技术正以井喷式的速度蓬勃发展。将微电子和光电子结合起来,开发硅基大规模光电子集成技术,已经成为信息技术发展的必然和业界的普遍共识。谢谢各位!