3.2 第1课时 导数的应用.docx

上传人(卖家):和和062 文档编号:357215 上传时间:2020-03-11 格式:DOCX 页数:15 大小:1.32MB
下载 相关 举报
3.2 第1课时 导数的应用.docx_第1页
第1页 / 共15页
3.2 第1课时 导数的应用.docx_第2页
第2页 / 共15页
3.2 第1课时 导数的应用.docx_第3页
第3页 / 共15页
3.2 第1课时 导数的应用.docx_第4页
第4页 / 共15页
3.2 第1课时 导数的应用.docx_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、1函数的单调性在某个区间(a,b)内,如果f(x)0,那么函数yf(x)在这个区间内单调递增;如果f(x)0,右侧f(x)0,那么f(x0)是极大值;如果在x0附近的左侧f(x)0,那么f(x0)是极小值(2)求可导函数极值的步骤:求f(x);求方程f(x)0的根;考察f(x)在方程f(x)0的根附近的左右两侧导数值的符号如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值3函数的最值(1)在闭区间a,b上连续的函数f(x)在a,b上必有最大值与最小值(2)若函数f(x)在a,b上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x

2、)在a,b上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值(3)设函数f(x)在a,b上连续,在(a,b)内可导,求f(x)在a,b上的最大值和最小值的步骤如下:求函数yf(x)在(a,b)内的极值;将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值【知识拓展】1在某区间内f(x)0(f(x)0.()(2)如果函数f(x)在某个区间内恒有f(x)0,则f(x)在此区间内没有单调性()(3)函数的极大值不一定比极小值大()(4)对可导函数f(x),f(x0)0是x0点为极值点的充要条件()(5)函数的最大值不一定是极大值,函数的

3、最小值也不一定是极小值()(6)三次函数在R上必有极大值和极小值()1(教材改编)f(x)x36x2的单调递减区间为()A(0,4) B(0,2)C(4,) D(,0)答案A解析f(x)3x212x3x(x4),由f(x)0,得0x4,单调递减区间为(0,4)2如图是函数yf(x)的导函数yf(x)的图象,则下面判断正确的是()A在区间(2,1)上f(x)是增函数B在区间(1,3)上f(x)是减函数C在区间(4,5)上f(x)是增函数D当x2时,f(x)取到极小值答案C解析在(2,1)上,导函数的符号有正有负,所以函数f(x)在这个区间上不是单调函数;同理,函数在(1,3)上也不是单调函数;在

4、x2的左侧,函数在(,2)上是增函数,在x2的右侧,函数在(2,4)上是减函数,所以当x2时,f(x)取到极大值;在(4,5)上导函数的符号为正,所以函数在这个区间上为增函数3已知定义在实数集R上的函数f(x)满足f(1)3,且f(x)的导数f(x)在R上恒有f(x)2(xR),则不等式f(x)2x1的解集为()A(1,) B(,1)C(1,1) D(,1)(1,)答案A解析令g(x)f(x)2x1,g(x)f(x)20,g(x)在R上为减函数,g(1)f(1)210.由g(x)1,故选A.4函数f(x)xln x的单调递减区间为()A(0,1) B(0,)C(1,) D(,0)(1,)答案A

5、解析函数的定义域是(0,),f(x)1,令f(x)0,得0x0时,ex1,aex0)令y0,得0x0,则其在区间(,)上的解集为和,即f(x)的单调递增区间为和.思维升华确定函数单调区间的步骤(1)确定函数f(x)的定义域;(2)求f(x);(3)解不等式f(x)0,解集在定义域内的部分为单调递增区间;(4)解不等式f(x)0,即8x0,解得x,函数y4x2的单调增区间为.故选B.(2)因为函数f(x)xln x,定义域为(0,),所以f(x)ln x1(x0),当f(x)0时,解得x,即函数的单调递增区间为(,);当f(x)0时,解得0x0,即a0,解得x1;令f(x)0,解得1 x1,所以

6、f(x)的单调递增区间为(, 1)和(1,);f(x)的单调递减区间为(1,1)综上所述:当a1时,f(x)在R上单调递增;当a0,故f(x)在(0,)上单调递增;当a0时,f(x)0,故f(x)在(0,)上单调递减;当0a1时,令f(x)0,解得x ,则当x(0, )时,f(x)0,故f(x)在(0, )上单调递减,在( ,)上单调递增题型三已知函数单调性求参数例3(2016西安模拟)已知函数f(x)ln x,g(x)ax22x(a0)(1)若函数h(x)f(x)g(x)存在单调递减区间,求a的取值范围;(2)若函数h(x)f(x)g(x)在1,4上单调递减,求a的取值范围解(1)h(x)l

7、n xax22x,x(0,),所以h(x)ax2,由于h(x)在(0,)上存在单调递减区间,所以当x(0,)时,ax2有解设G(x),所以只要aG(x)min即可而G(x)(1)21,所以G(x)min1.所以a1.(2)由h(x)在1,4上单调递减得,当x1,4时,h(x)ax20恒成立,即a恒成立所以aG(x)max,而G(x)(1)21,因为x1,4,所以,1,所以G(x)max(此时x4),所以a,即a的取值范围是,)引申探究1本例(2)中,若函数h(x)f(x)g(x)在1,4上单调递增,求a的取值范围解由h(x)在1,4上单调递增得,当x1,4时,h(x)0恒成立,当x1,4时,a

8、恒成立,又当x1,4时,()min1(此时x1),a1,即a的取值范围是(,12本例(2)中,若h(x)在1,4上存在单调递减区间,求a的取值范围解h(x)在1,4上存在单调递减区间,则h(x)有解,又当x1,4时,()min1,a1,即a的取值范围是(1,)思维升华根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:yf(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集(2)f(x)为增函数的充要条件是对任意的x(a,b)都有f(x)0且在(a,b)内的任一非空子区间上f(x)不恒为零,应注意此时式子中的等号不能省略,否则漏解(3)函数在某个区间存在单调区间可转化为不等

9、式有解问题已知函数f(x)exln xaex(aR)(1)若f(x)在点(1,f(1)处的切线与直线yx1垂直,求a的值;(2)若f(x)在(0,)上是单调函数,求实数a的取值范围解(1)f(x)exln xexaex(aln x)ex,f(1)(1a)e,由(1a)e1,得a2.(2)由(1)知f(x)(aln x)ex,若f(x)为单调递减函数,则f(x)0在x0时恒成立即aln x0在x0时恒成立所以aln x在x0时恒成立令g(x)ln x(x0),则g(x)(x0),由g(x)0,得x1;由g(x)0,得0x0时恒成立,即aln x0在x0时恒成立,所以aln x在x0时恒成立,由上

10、述推理可知此时a1.故实数a的取值范围是(,15用分类讨论思想研究函数的单调性典例(12分)已知函数f(x)ln x,g(x)f(x)ax2bx,其中函数g(x)的图象在点(1,g(1)处的切线平行于x轴(1)确定a与b的关系;(2)若a0,试讨论函数g(x)的单调性思想方法指导含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:方程f(x)0是否有根;若f(x)0有根,求出根后判断其是否在定义域内;若根在定义域内且有两个,比较根的大小是常见的分类方法规范解答解(1)依题意得g(x)ln xax2bx,则g(x)2axb.2分由函数g(x)的图象在点(1,g(1)处的切线

11、平行于x轴得g(1)12ab0,b2a1.4分(2)由(1)得g(x).函数g(x)的定义域为(0,),当a0时,g(x).由g(x)0,得0x1,由g(x)1,6分当a0时,令g(x)0,得x1或x,7分若,由g(x)0,得x1或0x,由g(x)0,得x1,即0a0,得x或0x1,由g(x)0,得1x,若1,即a,在(0,)上恒有g(x)0.11分综上可得:当a0时,函数g(x)在(0,1)上单调递增,在(1,)上单调递减;当0a时,函数g(x)在(0,)上单调递增,在(,1)上单调递减,在(1,)上单调递增12分1函数f(x)(x3)ex的单调递增区间是()A(,2) B(0,3)C(1,

12、4) D(2,)答案D解析函数f(x)(x3)ex的导数为f(x)(x3)exex(x3)ex(x2)ex.由函数导数与函数单调性的关系,得当f(x)0时,函数f(x)单调递增,此时由不等式f(x)(x2)ex0,解得x2.2已知函数f(x)x3ax4,则“a0”是“f(x)在R上单调递增”的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件答案A解析f(x)x2a,当a0时,f(x)0恒成立,故“a0”是“f(x)在R上单调递增”的充分不必要条件3已知f(x)1xsin x,则f(2),f(3),f()的大小关系正确的是()Af(2)f(3)f() Bf(3)f(2)f

13、()Cf(2)f()f(3) Df()f(3)f(2)答案D解析因为f(x)1xsin x,所以f(x)1cos x,当x(0,时,f(x)0,所以f(x)在(0,上是增函数,所以f()f(3)f(2)故选D.4已知函数f(x)x在(,1)上单调递增,则实数a的取值范围是()A1,) B(,0)(0,1C(0,1 D(,0)1,)答案D解析函数f(x)x的导数为f(x)1,由于f(x)在(,1)上单调递增,则f(x)0在(,1)上恒成立,即x2在(,1)上恒成立,由于当x1,则有1,解得a1或af(c)f(d)Bf(b)f(a)f(e)Cf(c)f(b)f(a)Df(c)f(e)f(d)答案C

14、解析依题意得,当x(,c)时,f(x)0,所以函数f(x)在(,c)上是增函数,因为abf(b)f(a),因此C正确6(2015课标全国)设函数f(x)是奇函数f(x)(xR)的导函数,f(1)0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是()A(,1)(0,1)B(1,0)(1,)C(,1)(1,0)D(0,1)(1,)答案A解析因为f(x)(xR)为奇函数,f(1)0,所以f(1)f(1)0.当x0时,令g(x),则g(x)为偶函数,g(1)g(1)0.则当x0时,g(x)0,故g(x)在(0,)上为减函数,在(,0)上为增函数所以在(0,)上,当0x1时,g(x

15、)g(1)00f(x)0;在(,0)上,当x1时,g(x)g(1)00f(x)0.综上,知使得f(x)0成立的x的取值范围是(,1)(0,1),故选A.7(2016青岛模拟)若函数f(x)x3bx2cxd的单调减区间为(1,3),则bc_.答案12解析f(x)3x22bxc,由题意知1x3是不等式3x22bxc0的解集,1,3是f(x)0的两个根,b3,c9,bc12.8(2016衡水中学模拟)已知函数f(x)(xR)满足f(1)1,f(x)的导数f(x),则不等式f(x2)的解集为_答案(,1)(1,)解析设F(x)f(x)x,F(x)f(x),f(x),F(x)f(x)0,即函数F(x)在

16、R上单调递减,f(x2),f(x2)f(1),F(x2)1,即x(,1)(1,)9若函数f(x)x3x22ax在,)上存在单调递增区间,则a的取值范围是_答案(,)解析对f(x)求导,得f(x)x2x2a(x)22a.当x,)时,f(x)的最大值为f()2a.令2a0,解得a,所以a的取值范围是(,)10若函数f(x)2x33mx26x在区间(2,)上为增函数,则实数m的取值范围为_答案(,解析f(x)6x26mx6,当x(2,)时,f(x)0恒成立,即x2mx10恒成立,mx恒成立令g(x)x,g(x)1,当x2时,g(x)0,即g(x)在(2,)上单调递增,m2.11已知函数f(x)ln

17、x,其中aR,且曲线yf(x)在点(1,f(1)处的切线垂直于直线yx.(1)求a的值;(2)求函数f(x)的单调区间解(1)对f(x)求导得f(x)(x0),由f(x)在点(1,f(1)处的切线垂直于直线yx,知f(1)a2,解得a.(2)由(1)知f(x)ln x,则f(x)(x0)令f(x)0,解得x1或x5.因为x1不在f(x)的定义域(0,)内,故舍去当x(0,5)时,f(x)0,故f(x)在(5,)内为增函数综上,f(x)的单调增区间为(5,),单调减区间为(0,5)12已知函数f(x)ln x,g(x)axb.(1)若f(x)与g(x)在x1处相切,求g(x)的表达式;(2)若(

18、x)f(x)在1,)上是减函数,求实数m的取值范围解(1)由已知得f(x),f(1)1a,a2.又g(1)0ab,b1,g(x)x1.(2)(x)f(x)ln x在1,)上是减函数(x)0在1,)上恒成立即x2(2m2)x10在1,)上恒成立,则2m2x,x1,),x2,),2m22,m2.故实数m的取值范围是(,2*13.(2016辽宁鞍山一中高三月考)已知函数f(x)x3x2.(1)求函数f(x)的单调区间;(2)设函数g(x)f(x)2x,且g(x)在区间(2,1)上存在单调递减区间,求实数a的取值范围解(1)f(x)x2axx(xa),当a0时,f(x)x20恒成立,f(x)在R上单调递增当a0时,当x(,0)时,f(x)0;当x(0,a)时,f(x)0,f(x)的增区间为(,0),(a,),减区间为(0,a)当a0;当x(a,0)时,f(x)0,f(x)的增区间为(,a),(0,),减区间为(a,0)(2)g(x)x2ax2,依题意,存在x(2,1),使不等式g(x)x2ax20成立,即当x(2,1)时,a(x)max2即可所以满足要求的a的取值范围是(,2)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 一轮复习
版权提示 | 免责声明

1,本文(3.2 第1课时 导数的应用.docx)为本站会员(和和062)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|