1、数列综合训练1已知数列an(nN*)是公差不为0的等差数列,a11,且a2,a4,a8成等比数列(1)求数列an的通项公式;(2)设数列的前n项和为Tn,求Tn2已知数列an中,a13,an(n2,nN*,),设bn(nN*)(1)求证:数列bn是等差数列;(2)求数列的前n项和Tn 3已知an是公差不为0的等差数列,满足a33,且a2,a4,a8成等比数列(1)求数列an的通项公式an;(2)设bn,求数列bn的前n项和Tn4设Sn是等比数列an的前n项和已知S24,a323a4(1)求an和Sn;(2)设bn,求数列bn的前n项和Tn5在数列an中,a11,anan12n11(n2)(1)
2、求an的通项公式;(2)设bn,记数列bn的前n项和为Sn,证明:Sn16已知等差数列an的公差为d,前n项和为Sn,数列bn为递增的等比数列,公比为q,前n项和为Tn,且a1b1,dq,a2+a56b2,a3+a43b3(1)求数列an,bn的通项公式;(2)设bn,cn的前n项和为Rn,证明:Rn17在an2n1,3bn2Tn+3;2Sn=n2+an,bn= a2n Sn,这两组条件中任选一组,补充在下面横线处,并解答下列问题已知数列的an前n项和是Sn,数列bn的前n项和是Tn,_(1)求数列an,bn的通项公式;(2)设cn,证明:c1+c2+c3+cn18数列an和bn满足a1b11
3、,bn+1an+1an,bn+12bn(1)求数列an,bn的通项公式;(2)若cnbnlog2(an+1),求数列cn的前n项和Sn9已知数列an的前n项和为Sn,且Sn2an1(1)求an的通项公式;(2)求数列的前n项和Tn10已知数列an是等差数列,数列bn是各项均为正数的等比数列,且a1b11,a2+b26,a3+b314()求数列an,bn的通项公式;()求数列anbn的前n项和Sn11已知数列an满足a11,an+1(nN*),数列bn满足bn-1(1)证明:数列bn为等比数列,并求bn的通项公式;(2)设cnnbn,求数列cn的前n项和Sn12已知数列an满足an+1an+1(
4、nN*),且a22(1)若数列bn满足b11,bn+1bn+2an1,求数列bn的通项公式;(2)求数列an的前n项和Sn数列综合训练1已知数列an(nN*)是公差不为0的等差数列,a11,且a2,a4,a8成等比数列(1)求数列an的通项公式;(2)设数列的前n项和为Tn,求Tn【解答】解:(1)设an的公差为d,因为a2,a4,a8成等比数列,所以,即,化简得d2a1d,又a11,且d0,解得d1,所以有ana1+(n1)dn;(2)由(1)得,所以2已知数列an中,a13,an(n2,nN*,),设bn(nN*)(1)求证:数列bn是等差数列;(2)求数列的前n项和Tn【解答】(1)证明
5、:由an2,得an+12,则bn+1bn1,又当n1时,b1,所以bn是以为首项,1为公差的等差数列;(2)由(1)可知bn+(n1)1n,所以2(),所以Tn2(1+)2(1)3已知an是公差不为0的等差数列,满足a33,且a2,a4,a8成等比数列(1)求数列an的通项公式an;(2)设bn,求数列bn的前n项和Tn【解答】解:(1)an是公差不为0的等差数列,设等差数列an的公差为d,满足a33,a3a1+2d3,又a2,a4,a8成等比数列a42a2a8,即(a1+3d)2(a1+d)(a1+7d),解得:d1,a11an1+1(n1)n;(2),数列bn的前n项和Tn(1+)4设Sn
6、是等比数列an的前n项和已知S24,a323a4(1)求an和Sn;(2)设bn,求数列bn的前n项和Tn【解答】解:(1)设等比数列an的首项为a1,公比为q,已知S24,a323a4,则:,解得,整理得,(2)由bn,故15在数列an中,a11,anan12n11(n2)(1)求an的通项公式;(2)设bn,记数列bn的前n项和为Sn,证明:Sn1【解答】解:(1)a11,anan12n11(n2),a11,a2a1211,a3a2221,.anan12n11(n2)累加得:,验证a11成立,则;证明:(2)bn,Snb1+b2+b3+.+bn+1n1时,2n+1n+1,0,则Sn116已
7、知等差数列an的公差为d,前n项和为Sn,数列bn为递增的等比数列,公比为q,前n项和为Tn,且a1b1,dq,a2+a56b2,a3+a43b3(1)求数列an,bn的通项公式;(2)设bn,cn的前n项和为Rn,证明:Rn1【解答】解:(1)由等差数列的性质知a2+a5a3+a4,故6b23b3,故dq2;则2a1+5d6b2,即2a1+1012a1,故a11;故an2n1,bn2n1;(2)证明:,Rn(1)+()+117在an2n1,3bn2Tn+3;2Sn=n2+an,bn= a2n Sn,这两组条件中任选一组,补充在下面横线处,并解答下列问题已知数列的an前n项和是Sn,数列bn的
8、前n项和是Tn,_(1)求数列an,bn的通项公式;(2)设cn,证明:c1+c2+c3+cn1【解答】解:(1)选an2n1,3bn2Tn+3,可得3b12T1+32b1+3,即b13,当n2时,3bn12Tn1+3,又3bn2Tn+3,两式相减可得3bn3bn12Tn+32Tn132bn,即有bn3bn1,则数列bn是首项和公比均为3的等比数列,所以bn33n13n;选,可得2a12S11+a1,解得a11,当n2时,2Sn1(n1)2+an1,又2Snn2+an,两式相减可得2an2Sn2Sn1n2+an(n1)2an12n1+anan1,则an+an12n1,即为annan1(n1),
9、an1(n1)an2(n2),.,a22(a11)0,所以ann(1)n1(a11)0,即ann,Snn(n+1),bna2nSn2nn(n+1)n2(n+1);(2)证明:若选,可得cn(2n1)()n,设Rnc1+c2+c3+cn1+3()2+5()3+.+(2n3)()n1+(2n1)()n,Rn1()2+3()3+5()4+.+(2n3)()n+(2n1)()n+1,上面两式相减可得Rn+2()2+()3+.+()n1+()n(2n1)()n+1+2(2n1)()n+1,所以Rn1(n+1)()n,因为(n+1)()n0恒成立,所以Rn1,即c1+c2+c3+cn1;若选,可得cn,则
10、c1+c2+c3+cn1+.+118数列an和bn满足a1b11,bn+1an+1an,bn+12bn(1)求数列an,bn的通项公式;(2)若cnbnlog2(an+1),求数列cn的前n项和Sn【解答】解:(1)b11,bn+12bn,数列bn是等比数列,公比为2,首项为1,bn2n1an+1anbn+12n,ana1+(a2a1)+(a3a2)+(anan1)1+2+22+2n12n1(2)cnbnlog2(an+1)n2n1,数列cn的前n项和Sn1+22+322+n2n1,2Sn2+222+(n1)2n1+n2n,Sn1+2+22+2n1n2nn2n,化为:Sn(n1)2n+19已知
11、数列an的前n项和为Sn,且Sn2an1(1)求an的通项公式;(2)求数列的前n项和Tn【解答】解:(1)由题意可得n2时,Sn12an11,与原式联立相减得SnSn1an2an2an1,an2an1,令n1得S1a12a11,a11,数列an是首项为1,公比为2的等比数列,(2)由(1)得,两式相减得,化简得10已知数列an是等差数列,数列bn是各项均为正数的等比数列,且a1b11,a2+b26,a3+b314()求数列an,bn的通项公式;()求数列anbn的前n项和Sn【解答】解:()设an的公差为d,bn的公比为q(q0),由a1b11,a2+b26,得d+q5,又a3+b314,得
12、2d+q213,联立和解得或(舍去),所以;()由()知,则,两式相减得,即2Sn1+2(3+32+33+3n1)(2n1)3n3n2(2n1)3n(22n)3n2,所以11已知数列an满足a11,an+1(nN*),数列bn满足bn-1(1)证明:数列bn为等比数列,并求bn的通项公式;(2)设cnnbn,求数列cn的前n项和Sn【解答】解:(1)证明:数列an满足a11,(nN*),取倒数可得:,变形为:2(),数列是等比数列,首项为,公比为22n12n2,即+2n2,2n1,数列bn为等比数列,首项为1,公比为2,2n1(2)cnnbnn2n1数列cn的前n项和Sn1+22+322+n2
13、n1,2Sn2+222+(n1)2n1+n2n,相减可得:Sn1+2+22+2n1n2nn2n,化为:Sn(n1)2n+11212已知数列an满足an+1an+1(nN*),且a22(1)若数列bn满足b11,bn+1bn+2an1,求数列bn的通项公式;(2)求数列an的前n项和Sn【解答】解:(1)数列an满足an+1an+1(nN*),且a22数列an是首项为1的等差数列,a1a21211,an1+(n1)1n,数列bn满足b11,bn+1bn+2an1,bn+1bn+2n1,bn+1bn2n1,bnb1+b2b1+b3b2+bnbn11+21+41+2(n1)12(1+2+n1)+2nn22n+2,数列bn的通项公式bnn22n+2(2)ann3n,数列an的前n项和:Sn13+232+333+n3n,3Sn132+233+334+(n1)3n+n3n+1,得:2Sn3+32+33+34+3nn3n+1n3n+1,Sn3n+1+