高一数学二次函数在闭区间上的最值公开课课件优质获奖比赛课件.ppt

上传人(卖家):晟晟文业 文档编号:3664805 上传时间:2022-10-02 格式:PPT 页数:26 大小:372.50KB
下载 相关 举报
高一数学二次函数在闭区间上的最值公开课课件优质获奖比赛课件.ppt_第1页
第1页 / 共26页
高一数学二次函数在闭区间上的最值公开课课件优质获奖比赛课件.ppt_第2页
第2页 / 共26页
高一数学二次函数在闭区间上的最值公开课课件优质获奖比赛课件.ppt_第3页
第3页 / 共26页
高一数学二次函数在闭区间上的最值公开课课件优质获奖比赛课件.ppt_第4页
第4页 / 共26页
高一数学二次函数在闭区间上的最值公开课课件优质获奖比赛课件.ppt_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、 二次函数在闭区间上的最值二次函数在闭区间上的最值 高中数学高中数学例例1、已知函数、已知函数f(x)=x22x 3.(1)若)若x 2,0,求函数求函数f(x)的最值;的最值;10 xy2 3例例1、已知函数、已知函数f(x)=x2 2x 3.(1)若)若x 2,0,求函数,求函数f(x)的最值;的最值;10 xy2 34 1(2)若)若x 2,4,求函数,求函数f(x)的最值;的最值;例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 3.2x 3.(1 1)若)若xx 2 2,00,求函数,求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数,

2、求函数f(x)f(x)的最值;的最值;y10 x2 34 1 2125(3)若)若x ,求求 函数函数f(x)的最值;的最值;25,21例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 32x 3(1 1)若)若xx22,00,求函数,求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,4 4,求函数,求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数,求函数f(x)f(x)的最值;的最值;25,2110 xy2 34 1 232123,21(4 4)若)若xx ,求函数求函数f(x)f(x)的最值的最值;10 xy2 34 1(5 5)若)

3、若 xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 3.2x 3.(1 1)若)若xx22,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数,求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数,求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求,求 函数函数f(x)f(x)的最值;的最值;25,2123,2110 xy2 34 1 tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 3.2x 3.

4、(1 1)若)若xx22,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数,求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数,求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求,求 函数函数f(x)f(x)的最值;的最值;(5 5)若)若xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.25,2123,2110 xy2 34 1 tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 3.2x 3.(1 1)若)若xx22,00,求函数求函数f(x)f(x)的最值;的最值;(

5、2 2)若)若xx 2 2,44,求函数,求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数,求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求,求 函数函数f(x)f(x)的最值;的最值;(5 5)若)若xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.25,2123,2110 xy2 34 1 tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 3.2x 3.(1 1)若)若xx22,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数,求函数f(x)f(x)的最值;的最值

6、;(3 3)若)若xx ,求函数,求函数f(x)f(x)的最值;的最值;(4 4)若)若xx ,求,求 函数函数f(x)f(x)的最值;的最值;(5 5)若)若xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.25,2123,2110 xy2 34 1 tt+2例例1 1、已知函数、已知函数f(x)=xf(x)=x2 2 2x 3.2x 3.(1 1)若)若xx22,00,求函数求函数f(x)f(x)的最值;的最值;(2 2)若)若xx 2 2,44,求函数,求函数f(x)f(x)的最值;的最值;(3 3)若)若xx ,求函数,求函数f(x)f(x)的最值;的最值;(4

7、4)若)若xx ,求,求 函数函数f(x)f(x)的最值;的最值;(5 5)若)若xxtt,t+2t+2时,时,求函数求函数f(x)f(x)的最值的最值.25,2123,21评注评注:例例1 1属于属于“轴轴定区间变定区间变”的问题,的问题,看作动区间沿看作动区间沿x x轴移轴移动的过程中,函数最动的过程中,函数最值的变化,即动区间值的变化,即动区间在定轴的左、右两侧在定轴的左、右两侧及包含定轴的变化,及包含定轴的变化,要注意开口方向及端要注意开口方向及端点情况。点情况。10 xy2 3 34 1 tt+2例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)

8、x+1(a0)在区间在区间 11,22上的最值上的最值.10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 11,22上的最值上的最值.10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 11,22上的最值上的最值.10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 11,22上的最值上的最值.10 xy2 1 10 xy2 1 10 xy2 1 例例

9、2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 11,22上的最值上的最值.10 xy2 1 10 xy2 1 例例2 2、求函数、求函数f(x)=axf(x)=ax2 22a2a2 2x+1(a0)x+1(a0)在区间在区间 11,22上的最值上的最值.评注评注:例例2 2属于属于“轴变区间定轴变区间定”的问题,看作的问题,看作对称轴沿对称轴沿x x轴移动的过程中轴移动的过程中,函数最值的变化函数最值的变化,即对称轴在定区间的左、右两侧及对称轴在定即对称轴在定区间的左、右两侧及对称轴在定区间上变化情况区间上变化情况,要注意开口方

10、向及端点情况。要注意开口方向及端点情况。10 xy2 1 10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,1.0,1.10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,1.0,1.10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,

11、使使f(x)f(x)的值域是的值域是0,1.0,1.10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,1.0,1.10 xy2 1 例例3 3、已知函数、已知函数f(x)=xf(x)=x2 2+ax+b+ax+b,x0,1x0,1,试确定试确定a a、b,b,使使f(x)f(x)的值域是的值域是0,1.0,1.10 xy2 1 总结总结:求二次函数:求二次函数f(x)=axf(x)=ax2 2+bx+bx+c+c在在mm,nn上上 的最值或值域的一般方法是:的最值或值域的一般方法是:(2 2)当)当x x0 0mm,nn时,时,f(m)f(m)、f(n)f(n)、f(xf(x0 0)中的较大者是最大值中的较大者是最大值,较小者是最小值;较小者是最小值;(1)检查)检查x0=是否属于是否属于 m,n;ab2(3 3)当)当x x0 0 m m,nn时,时,f(m)f(m)、f(n)f(n)中的较大中的较大 者是最大值,较小者是最小值者是最大值,较小者是最小值.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中 > 数学 > 其他
版权提示 | 免责声明

1,本文(高一数学二次函数在闭区间上的最值公开课课件优质获奖比赛课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|