1、 12.2.3三角形全等的判定(ASA、AAS)导学案【学习目标】1、掌握三角形全等的“角边角”“角角边”条件能运用全等三角形的条件,解决简单的推理证明问题2经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程3、积极投入,激情展示,体验成功的快乐。学习重点:已知两角一边的三角形全等探究学习难点:灵活运用三角形全等条件证明【学习过程】一、自主学习1、复习思考(1)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?(2)在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2、探究
2、一:两角和它们的夹边对应相等的两个三角形是否全等? (1)动手试一试。已知:ABC 求作:,使=B, =C,=BC,(不写作法,保留作图痕迹)(2) 把剪下来放到ABC上,观察与ABC是否能够完全重合?(3)归纳;由上面的画图和实验可以得出全等三角形判定(三):两角和它们的夹边对应相等的两个三角形 (可以简写成“ ”或“ ”)(4)用数学语言表述全等三角形判定(三)在ABC和中, ABC 3、探究二。两角和其中一角的对边对应相等的两三角形是否全等(1)如图,在ABC和DEF中,A=D,B=E,BC=EF,ABC与DEF全等吗?能利用前面学过的判定方法来证明你的结论吗?(2)归纳;由上面的证明可
3、以得出全等三角形判定(四):两个角和其中一角的对边对应相等的两个三角形 (可以简写成“ ”或“ ”)(3)用数学语言表述全等三角形判定(四)在ABC和中, ABC 二、合作探究1、例1、如下图,D在AB上,E在AC上,AB=AC,B=C求证:AD=AE2已知:点D在AB上,点E在AC上, BEAC, CDAB,AB=AC,求证:BD=CE三、学以致用3、如图,在ABC中,B=2C,AD是ABC的角平分线,1=C,求证AC=AB+CE四、课堂小结(1)今天我们又学习了两个判定三角形全等的方法是:(2)三角形全等的判定方法共有 五、课后检测 1、2、3、4.满足下列哪种条件时,就能判定ABCDEF ( )A. AB=DE,BC=EF, AE; B. AB=DE,BC=EF, CFC. AE,AB=EF, BD; D. AD,AB=DE, BEA F C D12EB5.如图所示,已知AD,12,那么要得到ABCDEF,还应给出的条件是:( )A. BE B.ED=BCC. AB=EF D.AF=CD6.如6题图, 在ABC和DEF中,AF=DC, AD,当_时,可根据“ASA”证明ABCDEF