1、12.2.2 用样本的数字特征估计总用样本的数字特征估计总体的数字特征体的数字特征2233(一一)众数、中位数、平均数的概念众数、中位数、平均数的概念 中位数中位数:将一组数据按大小依次排列,:将一组数据按大小依次排列,把处在把处在最中间位置最中间位置的一个数据(或最中的一个数据(或最中间两个数据的平均数)叫做这组数据的间两个数据的平均数)叫做这组数据的中位数中位数 众数众数:在一组数据中,出现:在一组数据中,出现次数最多次数最多的数据叫做这组数据的众数的数据叫做这组数据的众数 众数、中位数、平均数都是描述一组众数、中位数、平均数都是描述一组数据的集中趋势的特征数,只是描述的角数据的集中趋势的
2、特征数,只是描述的角度不同,其中以平均数的应用最为广泛度不同,其中以平均数的应用最为广泛.4平均数:一组数据的算术平均数,即 x=)xxx(n1n21 练习练习:在一次中学生田径运动会上,在一次中学生田径运动会上,参加男子跳高的参加男子跳高的17名运动员的成绩如下名运动员的成绩如下表所示:表所示:成绩成绩(单单位:位:米米)150160165170175180185190人数人数23234111分别求这些运动员成绩的众数,中位数与分别求这些运动员成绩的众数,中位数与平均数平均数 平均数平均数:一组数据的一组数据的算术平均数算术平均数,即即 x=5解:在解:在17个数据中,个数据中,1.75出现
3、了出现了4次,出现的次,出现的次数最多,即这组数据的众数是次数最多,即这组数据的众数是1.75上面表里的上面表里的17个数据可看成是按从小到大个数据可看成是按从小到大的顺序排列的,其中第的顺序排列的,其中第9个数据个数据1.70是最中间的是最中间的一个数据,即这组数据的中位数是一个数据,即这组数据的中位数是1.70;这组数据的平均数是这组数据的平均数是答:答:17名运动员成绩的众数、中位数、平均数名运动员成绩的众数、中位数、平均数依次是依次是1.75(米)、(米)、1.70(米)、(米)、1.69(米)(米).6(二二)众数、中位数、平均数与频率分众数、中位数、平均数与频率分布直方图的关系布直
4、方图的关系 1、众数在样本数据的频率分布直方图众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。中,就是最高矩形的中点的横坐标。例如,在上一节调查的例如,在上一节调查的100位居民的月位居民的月均用水量的问题中,从这些样本数据的频均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众率分布直方图可以看出,月均用水量的众数是数是2.25t.如图所示:如图所示:7频率频率组距组距0.10.20.30.40.5O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)8 2、在样本中,有在样本中,有50的个体小于或等于的个体小于或等于中位数中位数,也
5、有,也有50的个体大于或等于中位的个体大于或等于中位数数,因此,在频率分布直方图中,中位数,因此,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由左边和右边的直方图的面积应该相等,由此可以估计中位数的值。下图中虚线代表此可以估计中位数的值。下图中虚线代表居民月均用水量的中位数的估计值,此数居民月均用水量的中位数的估计值,此数据值为据值为2.03t.9频率频率组距组距0.10.20.30.40.5O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)P72思考思考10说明说明:2.03这个中位数的估计值这个中位数的估计值,与样本与样本的中位数值的中位数值2.
6、0不一样不一样,这是因为样本数这是因为样本数据的频率分布直方图据的频率分布直方图,只是直观地表明只是直观地表明分布的形状分布的形状,但是从直方图本身得不出但是从直方图本身得不出原始的数据内容原始的数据内容,所以由频率分布直方所以由频率分布直方图得到的中位数估计值往往与样本的图得到的中位数估计值往往与样本的实际中位数值不一致实际中位数值不一致.p73思考思考11 3、平均数是频率分布直方图的平均数是频率分布直方图的“重重心心”.是直方图的平衡点是直方图的平衡点.n 个样本数据的平均个样本数据的平均数由公式数由公式:)xxx(n1n21X=下图显示了居民月均用水量的平均数下图显示了居民月均用水量的
7、平均数:x=1.973给出给出.12频率频率组距组距0.10.20.30.40.5O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)p7213(三三)三种数字特征的优缺点三种数字特征的优缺点 1、众数体现了样本数据的、众数体现了样本数据的最大集中最大集中点点,但它对其它数据信息的忽视使得无,但它对其它数据信息的忽视使得无法客观地反映总体特征法客观地反映总体特征.如上例中众数是如上例中众数是2.25t,它告诉我们它告诉我们,月均用水量为月均用水量为2.25t的的居民数比月均用水量为其它数值的居民居民数比月均用水量为其它数值的居民数多数多,但它并没有告诉我们多多少但它并
8、没有告诉我们多多少.14 2、中位数是样本数据、中位数是样本数据所占频率所占频率的等分线的等分线,它不受少数几个极端值的,它不受少数几个极端值的影响,这在某些情况下是优点,但它影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点。对极端值的不敏感有时也会成为缺点。如上例中假设有某一用户月均用水量如上例中假设有某一用户月均用水量为为10t,那么它所占频率为,那么它所占频率为0.01,几乎几乎不影响中位数不影响中位数,但显然这一极端值是不但显然这一极端值是不能忽视的。能忽视的。15 3、由于平均数与每一个样本的、由于平均数与每一个样本的数据有关,所以数据有关,所以任何一个样本数据的任何
9、一个样本数据的改变都会引起平均数的改变改变都会引起平均数的改变,这是众,这是众数、中位数都不具有的性质。也正因数、中位数都不具有的性质。也正因如此如此,与众数、中位数比较起来,平,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中的极全体的信息,但平均数受数据中的极端值的影响较大,使平均数在估计时端值的影响较大,使平均数在估计时可靠性降低。可靠性降低。16(四四)众数、中位数、平均数的简单应用众数、中位数、平均数的简单应用例例 某工厂人员及工资构成如下:某工厂人员及工资构成如下:人员人员经理经理 管理人员管理人员 高级技工高级
10、技工 工人工人学徒学徒 合计合计周工资周工资2200 250220200100人数人数16510123合计合计2200 150011002000 1006900(1)指出这个问题中周工资的众数、中)指出这个问题中周工资的众数、中位数、平均数位数、平均数(2)这个问题中,工资的平均数能客观)这个问题中,工资的平均数能客观地反映该厂的工资水平吗?为什么?地反映该厂的工资水平吗?为什么?17 分析分析:众数为:众数为200,中位数为,中位数为220,平均数为平均数为300。因平均数为因平均数为300,由表格中所列,由表格中所列出的数据可见,只有经理在平均数以出的数据可见,只有经理在平均数以上,其余的
11、人都在平均数以下,故用上,其余的人都在平均数以下,故用平均数不能客观真实地反映该工厂的平均数不能客观真实地反映该工厂的工资水平。工资水平。普通高中课程标准实验教科书普通高中课程标准实验教科书 必修必修3 3 第二章第二章 统计统计18n样本样本众数众数通常用来表示通常用来表示分类变量分类变量的中心值,的中心值,容易计算。容易计算。n中位数中位数不受少数几个极端数据(即排序靠前不受少数几个极端数据(即排序靠前或排序靠后的数据)的影响,容易计算。或排序靠后的数据)的影响,容易计算。n平均数平均数受样本中的每一个数据的影响,绝对受样本中的每一个数据的影响,绝对值越大的数据,对平均数的影响也越大。值越
12、大的数据,对平均数的影响也越大。均值、中位数、众数的特点均值、中位数、众数的特点31集中趋势的测度值集中趋势的测度值 普通高中课程标准实验教科书普通高中课程标准实验教科书 必修必修3 3 第二章第二章 统计统计19n如果样本均值大于样本中位数,说明数如果样本均值大于样本中位数,说明数据中可能存在较大的极端值;反之,说据中可能存在较大的极端值;反之,说明说明数据中存在可能较小的极端值。明说明数据中存在可能较小的极端值。n使用者常根据自己的利益去选取使用中使用者常根据自己的利益去选取使用中位数或平均值来描述数据的中心位置,位数或平均值来描述数据的中心位置,从而产生一些误导作用。从而产生一些误导作用。均值、中位数、众数的特点均值、中位数、众数的特点32普通高中课程标准实验教科书普通高中课程标准实验教科书 必修必修3 3 第二章第二章 统计统计20众数、中位数和算术平均数的关系众数、中位数和算术平均数的关系=注注:对称图形对称图形,重叠重叠左右偏时左右偏时,均值变化最快均值变化最快,中位值次之中位值次之,众值不变众值不变33