煤矿掘进顶板管理(课堂)课件.ppt

上传人(卖家):晟晟文业 文档编号:3905858 上传时间:2022-10-24 格式:PPT 页数:129 大小:6.95MB
下载 相关 举报
煤矿掘进顶板管理(课堂)课件.ppt_第1页
第1页 / 共129页
煤矿掘进顶板管理(课堂)课件.ppt_第2页
第2页 / 共129页
煤矿掘进顶板管理(课堂)课件.ppt_第3页
第3页 / 共129页
煤矿掘进顶板管理(课堂)课件.ppt_第4页
第4页 / 共129页
煤矿掘进顶板管理(课堂)课件.ppt_第5页
第5页 / 共129页
点击查看更多>>
资源描述

1、 一、矿山岩石基本性质一、矿山岩石基本性质 二、顶、底板有关概念二、顶、底板有关概念 三、三、巷道支护技术巷道支护技术 四、四、巷道顶板事故及防治技术巷道顶板事故及防治技术 五、煤矿顶板事故案例分析五、煤矿顶板事故案例分析 岩石在不同受力状态下的各种强度值、一般符合下列由大到小的顺序:岩石的强度越高、其抵抗外力使其变形、破坏的能力越强、则巷道越稳定。有的巷道可以利用围岩本身的强度而不支护、就可以维持巷道的稳定。岩石的坚固性是指岩石的爆破和凿岩的难易程度。分分级指标级指标f 称普氏岩石坚固性系数。称普氏岩石坚固性系数。这个分法将岩石按坚固性分为10级15种,在现场使用不方便。为了简化,我国煤炭系

2、统按坚固性将煤、岩分类为:软煤 f=1-1.5 硬煤 f=2-3 软岩 f=2-3 中硬岩 f=4-6 硬岩 f=8-10 坚硬岩石 f=12-14 最坚硬岩石 f=15-20 根据成因的不同、岩石分为岩浆岩、沉积岩、变质岩。对于采掘工程来说、还要对岩石进行定量的区分、以便能正确地进行工程设计、合理地选用施工方法、施工设备、机具与器材。工程实践与理论研究得出、围岩的稳定性主要取决于岩体的结构和岩体强度、煤矿部门根据锚喷支护与施工的需要、根据煤矿岩层的特点、制定了围岩分类表。围岩分类围岩分类岩层描述岩层描述巷道开掘后围岩的稳定状态巷道开掘后围岩的稳定状态岩种举例岩种举例类别类别名称名称稳定稳定岩

3、层岩层1.岩层完整坚硬、不易风化岩层完整坚硬、不易风化2.层层状岩层层间胶结好、无状岩层层间胶结好、无软弱夹层软弱夹层围岩长期不支护无碎块掉落现象围岩长期不支护无碎块掉落现象 完整的玄完整的玄武岩武岩稳定性稳定性较好的较好的岩层岩层1.完整比较坚硬完整比较坚硬2.层层状岩层层间胶结好状岩层层间胶结好3.坚坚硬块状岩层、裂隙面闭硬块状岩层、裂隙面闭合、无泥质充填物合、无泥质充填物 围岩较长时间不支护会出现小围岩较长时间不支护会出现小块掉落现象块掉落现象胶结好的砂胶结好的砂岩、砾岩岩、砾岩中等稳中等稳定岩层定岩层1.岩层完整中硬岩层完整中硬2.层层状岩层以坚硬岩层状岩层以坚硬岩层为主为主,夹,夹有

4、少数的软岩层有少数的软岩层3.比比较坚硬的块状岩层较坚硬的块状岩层能维持一个月以上的稳定、会产能维持一个月以上的稳定、会产生局部岩块掉落生局部岩块掉落砂岩、砂质砂岩、砂质页岩页岩稳定性稳定性较差的较差的岩层岩层1.较软的完整岩层较软的完整岩层2.中中硬的层状岩层硬的层状岩层3.中中硬的块状岩层硬的块状岩层围岩的稳定时间仅有几天围岩的稳定时间仅有几天页岩、泥岩页岩、泥岩不稳定不稳定岩层岩层1.易风化潮解剥落的松软岩易风化潮解剥落的松软岩层层2.各各类破碎岩层类破碎岩层围岩很容易产生冒顶片帮围岩很容易产生冒顶片帮炭质页岩、炭质页岩、煤煤二、顶、底板有关概念二、顶、底板有关概念(1)伪顶紧贴煤层,随

5、采随落,厚度一般0.3m0.5m。(2)直接顶位于伪顶或煤层(无伪顶时)之上,由一层或几层岩层组成,一般能随回柱放顶及时垮落。(3)基本顶位于直接顶之上(有时直接位于煤层之上)厚而坚硬的岩层。能维持很大的悬露面积而不随直接顶垮落。(1)直接底位于煤层之下、厚度较小(约0.2m0.4m),常由泥岩、页岩、粘土岩组成。(2)老底位于直接底或煤层(无直接底时)之下,一般由砂岩或石灰岩等坚固的岩层组成。支护的作用在于改善围岩稳定状况和控制围岩运动的发展速度、以维护安全的工作空间。围岩是承受地压的主要结构、设置人工支护只是为了改善和提高围岩自身支持能力。围岩不仅是施载物体、又是承载结构体、围岩承载圈和支

6、护体是组构巷道的统一体、是一个力学体系、是同时承受铅垂与水平作用力的厚壁圆筒、巷道的开掘与支护都要为保持与改善围岩的自持能力服务。u巷道支护的支架形式有:木支架、金属支架、锚杆支护、锚喷支护和料石混凝土砌碹等。u支架、砌碹等支护方式是着重改善围岩运动状况;锚杆支护侧重于提高围岩本身强度;锚杆喷浆等支护方法是将提高围岩本身强度和改善围岩运动状况这二者结合起来。u支护方式的选择、决定于围岩稳定状况。对受工作面采动影响小的巷道、可采用沉缩量小的刚性支护。对受工作面采动影响大的不稳定巷道、应选用可缩性支护。金属支架主要有梯形、拱形、封闭曲线形支架。1.金属梯形支架 主要有梯形刚性和梯形可缩性支架两种、

7、其力学特征和适用条件见下表。序号支架架型主要力学特征使用条件1梯形刚性支架不可缩承载能力较小围岩较稳定、变形量较小、在200mm左右、多用于巷道净端面小于10m2的炮采工作面两巷及综采工作面的回风平巷2梯形可缩性支架垂直可缩承载能力小围岩较稳定、顶压较大、侧压较小、多用于巷道净端面小于10m2的炮采工作面回风平巷。其顶底板相对移近率在10%35%之间 2.拱形金属支架拱形金属支架 主要有半圆拱可缩性支架、三心拱直腿可缩性支架、三心拱曲腿可缩性支架三种、其力学特性和适用条件见下表。序号支架类型主要力学特征适用条件1半圆拱可缩性支架承载能力较大、特别是在均匀受压时回采巷道和与集中胶带机道连通的石门

8、、围岩压力较大、较均匀或有一定侧压、顶底板相对移近率在10%-35%之间2三心拱直腿可缩性支架承载能力较大、特别是在顶压较大时回采巷道和与集中胶带机道连通的石门、围岩压力较大、特别是顶压较大、顶底板相对移近率在10%-35%之间3三心拱曲腿可缩性支架承载能力较大、抗侧压能力较大回采巷道和与集中胶带机道连通的石门、围岩压力较大、压力较均匀、顶压和侧压均较大、顶底板相对移近率在10%-35%之间序号序号支架架型支架架型主要力学特征主要力学特征使用条件使用条件1 1圆形可缩性支架圆形可缩性支架承载能力大、抗承载能力大、抗底臌和两帮移近底臌和两帮移近量的能力大、特量的能力大、特别是在均压时别是在均压时

9、围岩松软、移近量大、底臌和两帮围岩松软、移近量大、底臌和两帮移近量较严重、在使用非封闭支架移近量较严重、在使用非封闭支架时、围岩移近率时、围岩移近率30%30%35%35%、在压、在压力较均匀、并在回风平巷使用时更力较均匀、并在回风平巷使用时更为有利为有利2 2方环形可缩性支架方环形可缩性支架承载能力大、抗承载能力大、抗底臌和两帮移进底臌和两帮移进量的能力大、特量的能力大、特别是肩压大、压别是肩压大、压力不太均匀时力不太均匀时围岩松软、移近量大、底臌和两帮围岩松软、移近量大、底臌和两帮移近量较严重、在使用非封闭支架移近量较严重、在使用非封闭支架时、围岩移近率时、围岩移近率30%30%35%35

10、%、其压、其压力不太较均匀、并在回风平巷使用力不太较均匀、并在回风平巷使用时更为有利时更为有利从支护机理上看,锚杆支护属于“主动”支护,可以充分利用围岩的自承能力,提高巷道围岩的稳定性,将载荷体变为承载体。在相同生产地质条件下,锚杆支护的巷道围岩变形量比棚式支护减少一半以上。从技术经济上对比,锚杆支护可以节约大量钢材,减少材料运输工作量,减轻工人的劳动强度和改善作业环境;保持采煤工作面上下两道和开切眼的畅通,为回采工作面快速推进和高产高效低成本生产创造有利条件;也提高了巷道的有效利用断面。锚杆支护巷道施工简单,机械化程度高,可大幅度降低巷道支护成本,提高掘进速度和生产效率。(1)悬吊理论)悬吊

11、理论(2)组合梁理论)组合梁理论(3)组合拱(压缩拱)理论)组合拱(压缩拱)理论 (4)最大水平应力理论)最大水平应力理论 机理:机理:将巷道顶板较软弱岩层悬吊在上部稳定岩层上,以避免较软弱岩层的破坏、失稳和塌落,锚杆所受的拉力来自被悬吊的岩层重量。缺点:缺点:没有考虑围岩的自承能力,而且将被锚固体与原岩体分开。适用条件:适用条件:锚杆可以锚固到顶板坚硬稳定岩层 机理:机理:将锚固范围内的岩层挤紧,增加各岩层间的摩擦力,防止岩石沿层面滑动,避免各岩层出现离层现象,提高其自撑能力。将巷道顶板锚固范围内的几个薄岩层锁紧成一个较厚的岩层(组合梁)。在上覆岩层载荷的作用下,这种组合厚岩层内的最大弯曲应

12、变和应力都将大大减小,组合梁的挠度亦减小。缺点:缺点:将锚杆作用与围岩的自稳作用分开;随着围岩条件的变化,在顶板较破碎、连续性受到破坏时,组合梁也就不存在了。适用条件:适用条件:层状地层顶板在相当距离内不存在稳定岩层,悬吊作用处于次要地位。机理:机理:在破裂区中安装预应力锚杆时,在杆体两端将形成圆锥形分布的压应力,如果沿巷道周边布置锚杆群,只要铺杆间距足够小,各个错杆形成的压应力圆锥体将相互交错,就能在岩体中形成一个均匀的压缩带,即承压拱,这个承压拱可以承受其上部破碎岩石施加的径向荷载。在承压拱内的岩石径向及切向均受压,处于三向应力状态,其围岩强度得到提高,支撑能力也相应加大。缺点缺点:一般不

13、能作为准确的定量设计。适用条件:适用条件:顶板无稳定岩层 机理:机理:矿井岩层的水平应力通常大于垂直应力,水平应力具有明显的方向性。在最大水平应力作用下,顶底板岩层易于发生剪切破坏,出现错动与松动而膨胀造成围岩变形,锚杆的作用即是约束其沿轴向岩层膨胀和垂直于轴向的岩层剪切错动。缺点:缺点:直观性较差。锚杆分类锚杆分类 材质材质:木质锚杆、塑料或是玻璃钢锚杆、金属锚杆:木质锚杆、塑料或是玻璃钢锚杆、金属锚杆 锚固:机械锚固、粘结锚固锚固:机械锚固、粘结锚固 锚固长度:局部锚固、全长锚固锚固长度:局部锚固、全长锚固目前目前90以上的锚固为金属树脂局部锚固锚杆以上的锚固为金属树脂局部锚固锚杆锚杆支护

14、主动支护通过锚杆的预应力加固松动围岩,提高围岩的自承载能力锚杆支护主动支护通过锚杆的预应力加固松动围岩,提高围岩的自承载能力实现主动支护的两个关键因素第一时间施打第一时间施加预应力实现主动支护的两个关键因素第一时间施打第一时间施加预应力锚杆选型尽可能选用预应力锚杆以最小的扭矩产生最大的预应力。锚杆选型尽可能选用预应力锚杆以最小的扭矩产生最大的预应力。三力匹配问题和三径匹配问题三力匹配问题和三径匹配问题金属锚杆金属锚杆 左旋细丝锚杆(左旋细丝锚杆(Q335、Q500)。)。右旋全螺纹钢锚杆(右旋全螺纹钢锚杆(Q500)。)。圆钢麻花锚杆(圆钢麻花锚杆(Q215、Q335)左旋预应力阻尼锚杆左旋预

15、应力阻尼锚杆 是一种预应力锚杆。阻尼有树脂或塑料阻尼、销是一种预应力锚杆。阻尼有树脂或塑料阻尼、销式阻尼、金属盖片式阻尼三种。式阻尼、金属盖片式阻尼三种。初期锚固力(或预应力)靠树脂粘结力实现。初期锚固力(或预应力)靠树脂粘结力实现。锚杆搅拌完毕后需要等待锚杆搅拌完毕后需要等待4060秒时间,然后打秒时间,然后打开阻尼实现锚杆的预应力(初锚力)开阻尼实现锚杆的预应力(初锚力)锚杆的预应力产生范围只在非锚固范围实现。锚杆的预应力产生范围只在非锚固范围实现。该锚杆安装口诀是:该锚杆安装口诀是:“一推一推”、“二转二转”、“三停三停”、“四紧四紧”。随着矿井开采深度加大和巷道断面的扩大,该类随着矿井

16、开采深度加大和巷道断面的扩大,该类锚杆应该是今后发展应用的主流锚杆。锚杆应该是今后发展应用的主流锚杆。该锚杆的缺点:加工过程多了压圆、滚丝两个工艺。该锚杆的优点是:()锚杆预应力大。锚杆预应力大。由于该锚杆螺纹是国标螺纹,螺纹螺距2.5mm,螺纹自锁效果好,通过特制的阻尼螺母,很容易达到设计的预应力。120型气动锚索钻机既可实现4吨的预应力。()锚杆锚固力高锚杆锚固力高。因该锚杆杆体设计的螺纹方向为左旋方向和锚杆的搅拌树脂方向(右旋)相反,在搅拌树脂的过程中会对树脂产生一个轴向挤压力,大量测试表明,同样杆体直径和同样树脂的情况下,左旋细丝预应力锚杆的锚固力比右旋等强全螺纹钢锚杆锚杆,锚杆力可提

17、高20以上。()杆体的有效断面大,锚杆强度高杆体的有效断面大,锚杆强度高。大量试验表明,同直径同材质的左旋细丝预应力锚杆的破断力比右旋等强全螺纹钢锚杆的破断力高出20以上。()左旋细丝预应锚杆因采用了合理的阻尼螺母,螺母材质为球墨铸铁,球墨铸铁和锚杆杆体的摩擦力是最小的,另外采用了减阻特制塑料垫圈,使锚杆的扭矩应力比大大提高。A 六方螺母预应力锚杆B 四方螺母预应力锚杆上图 右旋无阻尼等强螺纹钢锚杆右旋无阻尼等强螺纹钢锚杆该锚杆的优点:加工制造简单。该锚杆的缺点是:()杆体螺距大。螺距通常在1012mm左右,大螺距螺母与杆体咬合力低,摩擦力大,时常出现锚杆退丝现象,而且锚杆的安装应力低,很难达

18、到2吨以上的预应力。()锚杆锚固力低。因该锚杆杆体设计的螺纹方向(右旋)和锚杆的搅拌树脂方向(右旋搅拌)旋向相同,在搅拌树脂的过程中会对树脂产生一个向外的输送力,大量测试表明,同样杆体直径和同样树脂的情况下,右旋全螺纹等强锚杆的锚固力比左旋细丝预应力锚杆,锚杆力降低20。()杆体的有效断面小,强度低。大量试验表明,同直径同材质的右旋等强锚杆的破断力比左旋细丝预应力锚杆低20以上。左旋与右旋螺纹钢锚杆强度对比左旋与右旋螺纹钢锚杆强度对比 左旋滚丝螺纹钢锚杆杆体强度表杆体直径杆体直径(Bar Size)钢材级别钢材级别(Grade)屈服强度(吨)屈服强度(吨)抗拉强度(吨)抗拉强度(吨)国标国标实

19、测实测国标国标实测实测16MG3356.2819.09.18713.018MG3358.27711.012.10716.018MG50012.35415.016.30720.020MG50015.32718.020.23224.022MG50017.78920.023.48227.0右旋等强螺纹钢锚杆杆体强度表杆体直径杆体直径(mm)钢材级别钢材级别(MPa)屈服强度(吨)屈服强度(吨)抗拉强度(吨)抗拉强度(吨)国标国标实测实测国标国标实测实测18MG3358.79.112.613.020MG33510.810.215.615.022MG33513.113.3518.920.25 圆钢麻花式

20、锚杆圆钢麻花式锚杆(1)锚固力低()锚固力低(35吨)吨)(2)杆体强度低)杆体强度低 管逢式锚杆管逢式锚杆(1)全长摩擦锚固锚固力)全长摩擦锚固锚固力(2)锚固强度低)锚固强度低 (3)国外用于金属矿山硬岩巷道支护)国外用于金属矿山硬岩巷道支护 涨壳式锚杆涨壳式锚杆快装全长预应力锚快装全长预应力锚杆杆 安装简单迅速安装简单迅速 全长预应力全长预应力 预应力高预应力高 树脂用量少树脂用量少 组合粱效果好组合粱效果好 适合于层状软岩适合于层状软岩1.1.范围范围 本标准规定了煤巷锚杆支护技术的术语和定义、技术要求、煤巷锚杆支护监测及煤巷锚杆支护施工质量检测。本标准适用于煤矿煤巷锚杆支护,也适用于

21、半煤岩巷锚杆支护。2.2.规范性引用文件规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。GB/T52242003 预应力混凝土用钢绞线 GB/T143702000 预应力筋用锚具、夹具和连接器 GB500862001 锚杆喷射混凝土支护技术规范 MT146.12002 树脂锚杆 锚固剂 MT146.22002 树脂锚杆 金属杆体及其附件 MT/T9422005 矿用锚索 MT

22、50091994 煤矿井巷工程质量检验评定标准 3.3.术语和定义术语和定义 下列术语和定义适用于本标准。3.1 煤巷:断面中煤层面积占4/5或4/5以上的巷道。3.2 半煤岩巷:断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。3.3 锚杆支护:以锚杆为基本支护形式的支护方式。3.4 锚杆杆体破断力:锚杆杆体能承受的极限拉力。3.5 锚杆拉拔力:锚杆锚固后,拉拔试验时,锚杆破断或失效时的极限拉力。3.6 锚固力:锚杆的锚固部分或杆体在拉拔试验时,所能承受的极限载荷。3.7 设计锚固力:设计时给定的锚杆应能承受的锚固力。3.8 树脂锚杆:以树脂锚固剂配以各种材质杆体及托盘(托板)、螺母与

23、减磨垫圈等构件组成的锚杆。3.9 树脂锚固剂:起粘结锚固作用的材料称锚固剂,树脂锚固剂由树脂胶泥与固化剂两部份分隔包装成形。混合后能使杆体与被锚固体煤岩粘接在一起。3.10 锚固长度:锚杆的锚固剂或锚固装置与钻孔孔壁的有效结合长度。3.11 端头锚固:锚杆的锚固长度不大于钻孔长度的1/3。3.12 全长锚固:锚杆的锚固长度不小于钻孔长度的90。3.13 加长锚固:锚杆的锚固长度介于端头锚固与全长锚固之间。3.14 拉拔试验:测试锚杆拉拔力的试验。3.15 搅拌时间:安装树脂锚杆时,从开始搅拌树脂锚固剂到停止搅拌所用的时间。3.16 等待时间:安装锚杆时,搅拌停止后到可以上紧螺母托板的时间。3.

24、17 预紧力:安装锚杆(锚索)时,通过拧紧螺母或采用张拉方法施加在锚杆(锚索)上的拉力。3.18 预紧力矩:拧紧螺母使锚杆达到设计预紧力时,施加到螺母上的力矩。3.19 锚杆快速安装:使用锚杆钻机连续完成搅拌树脂锚固剂、拧紧螺母的全过程。3.20 初始设计:根据已有资料提出的巷道支护形式与参数。3.21 信息反馈:对支护监测信息进行解释,并据此对支护设计进行验证和修改的过程。3.22 正式设计:根据监测信息,对初始设计进行验证或修改,在技术性、经济性以及安全性等方面均能满足生产要求的支护设计。3.23 巷道顶板离层临界值:支护设计或工程实践分析确定的巷道顶板允许的最大离层值。3.24 复杂地段

25、:指断层及围岩破碎带、应力集中区、顶板淋水区、裂隙发育区、巷道穿层地段、瓦斯异常区、大断面、大跨度巷道等地段。3.25 异常情况:指巷道位移、离层、锚杆受力等发生突变的情况。4.4.技术要求技术要求 4.1煤巷围岩地质力学评估 4.1.1地质力学评估是煤巷锚杆支护设计的主要依据之一,锚杆支护设计前应进行地质力学评估。4.1.2煤巷围岩地质力学评估的内容包括现场地质条件和生产条件调查、煤巷围岩物理力学性质测定、围岩结构观测、地应力测量和锚杆拉拔力试验。煤巷围岩地质力学评估的具体内容见表1。4.1.3根据矿井开拓部署和采区划分合理安排煤巷围岩地质力学参数的测试。测点应具有代表性,应能最大程度地反映

26、整个井田和采区的实际情况,并根据测试数据绘制矿井地应力分布图。4.1.4地质力学评估首先应确定评估区域,应考虑煤巷服务期间影响支护系统的主要因素,锚杆支护设计应该限定在这个区域内。4.1.5煤巷围岩地质力学参数,包括围岩物理力学性质、围岩结构和围岩应力。4.1.6原岩应力测量宜优先采用应力解除法或水压致裂法。表表1 1 地质力学评估内容地质力学评估内容 序序号号参参 数数内内 容容1 1煤层厚度煤层厚度指被煤巷切割的煤层厚度。指被煤巷切割的煤层厚度。2 2煤层倾角与水平方向的夹角煤层倾角与水平方向的夹角在井下直接测取,或由工作面地质说明书给出。在井下直接测取,或由工作面地质说明书给出。3 3地

27、质构造地质构造煤巷周围地质构造的分布情况,由工作面地质说明书给出。煤巷周围地质构造的分布情况,由工作面地质说明书给出。4 4水文地质条件水文地质条件煤巷涌水量,水对围岩物理力学性质的影响,由工作面地质说明煤巷涌水量,水对围岩物理力学性质的影响,由工作面地质说明书给出。书给出。5 5煤巷几何形状和尺寸煤巷几何形状和尺寸根据工作面回采需要确定,一般宜选用的几何形状为矩形和梯形。根据工作面回采需要确定,一般宜选用的几何形状为矩形和梯形。6 62 2倍左右煤巷宽度范围内顶底板岩层层数和厚度倍左右煤巷宽度范围内顶底板岩层层数和厚度由地质综合柱状图或钻孔资料确定。由地质综合柱状图或钻孔资料确定。7 7岩(

28、煤)层物理力学参数岩(煤)层物理力学参数在井下原位测取,或在实验室内利用岩(煤)样测定。在井下原位测取,或在实验室内利用岩(煤)样测定。8 8岩层的分层厚度岩层的分层厚度指分层厚度的平均值。指分层厚度的平均值。9 9各层节理裂隙间距各层节理裂隙间距指沿结构面法线方向的平均间距,在(类似条件)煤巷内测取。指沿结构面法线方向的平均间距,在(类似条件)煤巷内测取。1010煤巷轴线方向煤巷轴线方向由工作面巷道布置图给出。由工作面巷道布置图给出。1111煤巷埋深煤巷埋深地表到煤巷的垂直距离。地表到煤巷的垂直距离。1212原岩应力的大小和方向原岩应力的大小和方向在井下实测。在井下实测。1313煤柱宽度煤柱

29、宽度煤柱的实际宽度。煤柱的实际宽度。1414采动影响采动影响煤巷受到周围掘进或回采工作面采动影响的情况。煤巷受到周围掘进或回采工作面采动影响的情况。1515锚杆在岩(煤)层中的拉拔力锚杆在岩(煤)层中的拉拔力锚杆在岩(煤)层中的拉拔力试验。锚杆在岩(煤)层中的拉拔力试验。钻孔应力解除法测试地应力示意图 岩芯采取孔 导向孔应力计安装孔钻机巷道 4.1.7巷道支护设计所需的煤岩体物理力学参数,可通过井下采取岩样进行实验室试验获得,岩样的采取、包装应满足锚杆支护设计的要求;一些参数(单轴抗压强度、变形模量等)也可通过井下原位测量获得。4.1.8煤岩体的物理力学性质参数包括煤岩体的真密度、视密度、孔隙

30、率、单轴抗拉强度、单轴抗压强度、弹性模量、泊松比、内聚力、内摩擦角和水理性质等。4.1.9围岩结构测量应采用煤巷表面观察、钻孔取芯测量和钻孔窥视等方法进行。结构面力学特性测试应在现场取样后在实验室进行试验。4.1.10煤巷围岩应进行锚杆拉拔力试验,试验方法参见附录A。锚杆拉拔力试验应在需支护的煤巷现场或类似条件的围岩中进行,每次不少于3根锚杆。根据试验结果判断围岩的可锚性。4.1.11在一个地点获取的参数用于同一煤层的其它地点时,应进行充分的现场调研和分析、评估。4.1.12当煤巷围岩物理力学性质、围岩结构和原岩应力条件发生显著变化时,应对地质力学参数进行重新测定。4.1.13应根据地质力学评

31、估结果采用适合本矿区的方法进行巷道围岩稳定性分类。4.1.14有下列情况之一的应重新进行围岩稳定性分类 a)当巷道围岩条件、开采深度、开采范围与原分类差异很大时;b)新采区各煤层巷道首次采用锚杆支护时。4.2煤巷锚杆支护设计4.2.1巷道围岩地质力学评估结果证明锚杆支护可行时,进行锚杆支护设计。4.2.2在采区巷道布置时,应尽量使煤巷的轴线方向与最大水平主应力的方向平行。4.2.3煤巷锚杆支护设计应采用动态设计方法。设计应在地质力学评估的基础上按以下程序进行:初始设计井下监测信息反馈正式设计。4.2.4根据地质力学评估结果,进行锚杆支护初始设计。初始设计应包括以下内容:a)巷道地质与生产条件及

32、地质力学评估结果;b)煤巷断面设计;c)锚杆支护形式设计;d)锚杆支护参数设计;e)锚杆支护材料选择和施工机具设备配套;不同掘进方向巷道状况的差异掘 进 方 向最 大 水 平应 力 集 中掘 进 方 向a)巷 道 状 况 好b)巷 道 状 况 差c)巷 道 左 侧 发 生 变 形最 大 水 平最 大 水 平 主 应 力最 大 水 平 主 应 力掘进方向应 力 集 中掘 进 方 向d)巷 道 右 侧 发 生 变 形主 应 力主 应 力主 应 力最 大 水 平最 大 水 平主 应 力 f)锚杆支护施工工艺、安全技术措施和施工质量指标;g)锚杆支护矿压监测设计;h)煤巷围岩复杂地段的支护方法和煤巷受

33、到采动影响时的超前支护设计。4.2.5锚杆支护初始设计可采用以下一种或多种方法组合进行4.2.5.1工程类比法 根据已经支护巷道的实践经验,通过类比,直接提出锚杆支护形式与参数。也可根据巷道围岩稳定性分类结果进行锚杆支护形式与参数设计。4.2.5.2理论计算法 选择适合本矿区煤巷条件的锚杆支护理论进行理论计算设计。4.2.5.3数值模拟法 根据地质力学评估结果建立计算机数值模拟模型,通过多方案比较,确定锚杆支护初始设计。4.2.6煤巷断面一般采用矩形或梯形,特殊情况可采用拱形或其它形状断面。煤巷断面设计应考虑以下因素:a)煤巷布置(运输)的最大设备尺寸;b)煤巷管线布置和行人要求;c)煤巷通风

34、要求;d)预留煤巷变形量。4.2.7锚杆支护形式以锚杆为基本支护构件,可选以下构件进行组合:a)组合构件(钢筋托梁、钢带、钢梁等);b)护网;c)锚索。4.2.8锚杆支护设计应包括以下内容:a)锚杆种类(螺纹钢锚杆、圆钢锚杆、玻璃钢锚杆或其它锚杆等);b)锚杆附件(托板、球形垫圈、减摩垫圈和螺母等)的规格和力学性能;c)锚杆几何参数(直径和长度等);d)锚杆力学参数(屈服载荷、破断载荷和延伸率等);e)锚杆预紧力;f)锚杆布置(锚杆间距、排距、安装角度等);g)钻孔直径、锚固方式和锚固长度;h)锚杆设计锚固力;i)锚固剂的型号、数量等;j)组合构件(钢筋托梁、钢带、钢梁等)形式、规格和力学性能

35、;k)护网形式、规格和力学性能;l)锚索形式和材质(单根锚索或锚索束,钢丝绳或钢绞线等);m)锚索附件(锚索托板和锚具等)的规格和力学性能;n)锚索几何参数(直径和长度等);o)锚索力学参数(屈服载荷、破断载荷和延伸率等);p)锚索预紧力;q)锚索布置(锚索间距、排距、安装角度等);r)锚索钻孔直径、锚固方式和锚固长度;s)煤巷锚杆支护布置图;t)组合构件加工示意图;u)支护材料消耗清单。4.2.9锚杆支护基本参数宜选用表2中的系列。表表2 2 锚杆支护基本参数锚杆支护基本参数序号序号参参 数数 名名 称称单单 位位参参 数数 值值1 锚杆长度m1.63.02 锚杆公称直径mm16.025.0

36、3 锚杆排距m0.71.54 锚杆间距m0.71.55 锚索有效长度m4.010.06 锚索公称直径mm15.222.0 4.2.10钻孔直径、锚杆直径和树脂锚固剂直径应合理匹配,钻孔直径和锚杆杆体直径之差应为6mm10mm,钻孔直径与树脂锚固剂直径之差应为4mm8mm。4.2.11煤巷顶板优先采用树脂锚固螺纹钢锚杆,对于煤顶巷道、全煤巷道和大断面煤巷,顶板宜采用高强度螺纹钢锚杆组合支护。4.2.11.1采煤工作面侧的煤帮优先采用可切割锚杆。4.2.11.2煤巷顶板锚杆支护补强加固手段应优先采用锚索(设计长度确保锚固到稳定岩层中的长度不小于1.0m)。锚索 顶板潜在 冒落范围 顶板锚杆 4.2

37、.11.3煤巷复杂地段应进行联合支护(断层破碎带、切眼等应采取锚索、架棚特殊措施)。复杂地段的支护范围应该延伸到正常地段5m以上。4.2.12煤巷锚杆支护施工工艺设计应包括施工设备配置、施工工艺、施工质量指标和安全技术措施等。4.2.13煤巷锚杆支护矿压监测设计应包括监测内容、测站安设方法、数据测读方法、测读频度和监测仪器等。矿压综合监测应给出反馈指标和锚杆支护初始设计修改准则;矿压日常监测应给出监测方法、合格标准和异常处情况的处理措施。4.2.14初始设计在井下实施后应及时进行矿压监测。将煤巷受掘进影响结束时的监测结果用于验证或修正初始设计。修正后的支护设计作为正式设计在井下使用。煤巷回采影

38、响期间的监测结果可用于其它类似条件巷道支护设计的验证与修改。4.2.15正式设计实施过程中,应进行矿压监测。当地质条件发生显著变化时及时修正。4.34.3锚杆支护材料锚杆支护材料 4.3.1一般要求 设计选用的煤巷锚杆支护材料应符合国家标准和相关行业标准,并具有产品合格证。锚杆(锚索)杆体及其附件、其它组合构件等的力学性能应相互匹配。(定期进行质量检测)4.3.2锚杆、托板、螺母 4.3.2.1金属杆体、托板、螺母应符合MT146.22002的规定。4.3.2.2树脂锚杆玻璃纤维增强塑料杆体应符合有关标准的规定。4.3.3锚固剂 树脂锚固剂应符合MT146.12002的有关规定。锚固剂生产厂家

39、应提供质量合格证。4.3.4钢带 钢带的选用应根据巷道具体情况选用不同型号和规格,钢带材料抗拉强度应不低于375MPa。4.3.5锚索 4.3.5.1锚索用钢绞线应符合GB/T52242003的规定;应优先选用抗拉强度等级不低于1860MPa,延伸率不小于3.5%,直径不小于15.2mm的钢绞线。4.3.5.2与钢绞线配套的锚具应符合GB/T143702000的规定。4.3.5.3锚索托板的承载力应符合MT/T9422005的要求。4.3.6网 煤巷锚杆支护巷道宜选用金属焊接网,在条件允许的情况下,可选用符合相应技术标准的编织金属网或其它材料的网。4.3.7喷射混凝土 服务期长的巷道或维修巷道

40、可采用喷射混凝土等封闭措施。4.4锚杆、锚索支护施工 4.4.1煤巷锚杆支护施工应按掘进工作面作业规程的有关规定进行。4.4.2锚杆支护巷道掘进工作面应采用临时支护,不应空顶作业,其临时支护形式、规格、要求等应在作业规程、措施中明确规定。4.4.3锚杆支护巷道落煤(岩)后,应及时进行顶板支护。若两帮煤体稳定,帮锚杆施工可适当滞后,滞后距离和最大空帮时间应在作业规程、措施中明确规定。4.4.4锚杆孔施工 4.4.4.1顶板锚杆孔应由外向掘进工作面逐排顺序施工,每排锚杆孔宜由中间向两帮顺序施工。4.4.4.2锚杆孔实际钻孔角度相对设计角度的偏差应不大于5。4.4.4.3锚杆孔的间排距误差应不超过1

41、00。4.4.4.4锚杆孔深度误差应在030范围内。4.4.4.5锚杆孔内的煤岩粉应吹干净。4.4.5锚杆安装(树脂锚固剂快速承载+预紧力)4.4.5.1锚杆安装应优先采用快速安装工艺。4.4.5.2锚固剂使用前应进行检查,不应使用过期、硬结、破裂等变质失效的锚固剂。(3个月)4.4.5.3当使用两卷以上不同型号的树脂锚固剂时,应按锚固剂凝固速度先快后慢的顺序,将锚固剂依次放入钻孔中,先将锚固剂推到孔底,再启动锚杆钻机搅拌树脂锚固剂。(CK/K)4.4.5.4螺母应采用机械设备紧固,需要二次紧固时,其扭矩或预紧力大小、紧固时间应在作业规程、措施中明确规定。4.4.5.5螺母安装达到规定预紧力矩

42、后,一般不得将螺母卸下重新安装。4.4.5.6托板应紧贴钢带、网或巷道围岩表面,当锚杆与巷道的周边不垂直时应使用异型托板。4.4.5.7锚杆托板与螺母之间宜使用减摩垫圈。4.4.5.8网的规格、联网方式及参数应在规程中明确规定。4.4.6锚索施工 4.4.6.1采用锚索钻机或锚杆钻机钻孔。4.4.6.2锚索孔深度误差应不大于100mm。4.4.6.3锚索宜垂直于顶板或巷道轮廓线布置,实际钻孔角度与设计角度的误差不大于10。4.4.6.4锚索间排距误差不大于100mm。4.4.6.5安装锚索应优先使用电动或气动张拉机具,不宜使用手动式张拉机具。4.4.6.6安装锚索时,钢绞线应推到孔底,安装后外

43、露钢绞线长度不宜超过300mm。(150250mm)4.4.6.7锚索施工后,应及时对锚索进行检查,锚索预紧力的最低值应不小于设计预紧力的90%。发现工作载荷低于预紧力时应及时进行二次张拉。4.4.6.8锚索钻孔中有淋水时,应采用补强措施。4.4.7其它施工要求 4.4.7.1锚杆支护作业时,如遇复杂地段(如煤炮剧烈、顶底板及两帮移近量显著增加、顶板出现淋水或淋水加大、围岩层节理发育、突发性片帮掉渣、巷道不易成型、钻眼速度异常等),应停止作业、分析原因,采取措施后方可施工。4.4.7.2复杂地段应优先选用锚杆、锚索、锚注等支护形式进行支护,并适当加大支护密度,必要时应采用金属支架、支柱等进行加

44、固(断层落差较大围岩破碎带、交叉点、应力集中区、顶板有较大淋水及煤层特别松软破碎区等)。4.4.7.3对失效、松动等不合格的锚杆、锚索应及时补打或紧固。4.4.7.4采用锚杆支护的煤层巷道,应备有一定数量的其它支护材料作防范措施。4.4.7.5任何煤巷作业地点,作为永久支护的锚杆、锚索、钢带、金属网等不应作为起吊设备或悬挂其他重物。4.4.8喷射混凝土施工 4.4.8.1喷射混凝土的施工应按GB50086-2001的规定执行。4.4.8.2为防止混凝土的塑性收缩和龟裂,可选用聚丙烯腈纤维喷射混凝土。5 煤巷锚杆支护监测5.1煤巷锚杆支护监测 煤巷锚杆支护监测分为综合监测和日常监测两种。综合监测

45、的目的是验证或修正锚杆支护初始设计,评价和调整支护设计;日常监测的目的是及时发现异常情况,采取必要措施,保证巷道安全。5.2监测内容 综合监测的主要内容为巷道表面和深部位移、顶板离层、锚杆(锚索)受力状况;日常监测主要内容为顶板离层观测。5.3测站安设 每条锚杆支护煤巷应安设综合监测测站;每间隔一定距离安设一个顶板离层指示仪进行日常监测。当围岩地质和生产条件发生显著变化时,应增减测站和顶板离层指示仪的数目;复杂地段必须安设顶板离层指示仪。顶板离层指示仪安设时应紧跟掘进工作面。5.4绘制测站位置和仪器分布图 应绘制每个测站的位置和仪器分布图,测站的监测仪器应专门编号,以便测读时识别。5.5观测频

46、度 距掘进工作面50m内和回采工作面100m内观测频度每天应不少于一次。在此范围以外,除非离层有明显增长,顶板离层仪的观测频度可为每周一次。5.6综合监测5.6.1巷道表面位移监测 5.6.1.1巷道表面位移监测内容包括顶底板相对移近量、顶板下沉量、底鼓量、两帮相对移近量和巷帮位移量。5.6.1.2 一般采用十字布点法安设测站,每个测站应安设两个监测断面,基点应安设牢固。5.6.1.3巷道深部位移观测范围不小于巷道跨度的1.5倍,孔内测点数不少于4个。5.6.2巷道顶板离层监测 巷道表面位移监测是在巷道的顶底板和两帮设置监测点,即采用中腰线十字布点法,如图所示。采用钢卷尺和测绳测量,综合监测频

47、度距掘进迎头100m以内一般每天不少于一次,100m以外每周不少于1次。5.6.2.1 顶板离层指示仪的浅基点应固定在锚杆端部位置,深基点一般应固定在锚杆上方稳定岩层内300mm500mm,若无稳定岩层,深基点在顶板中的深度应不小于巷道跨度的1.5倍。5.6.2.2 顶板离层值超过设计顶板离层临界值时,应及时采取补强加固措施。5.6.2.3不能进行有效测读的顶板离层指示仪应立即更换,如果不能安装在同一钻孔中,应靠近原位置钻一新孔进行安设,原指示仪更换后,要记录其读值,并标明已被更换。新指示仪的基点安设层位与高度应与原测点一致。5.6.3 锚杆、锚索受力监测 5.6.3.1采用测力锚杆监测加长(

48、全长)锚固锚杆的受力状况,采用锚杆(锚索)测力计监测端部锚固锚杆(锚索)的受力状况。5.6.3.2锚杆(锚索)的受力监测仪器应在巷道锚杆(锚索)支护施工过程中安设。5.6.4 信息反馈 应及时分析处理综合监测数据,进行信息反馈,并提交正式设计。掘进作业规程应作相应修改,审批通过后实施,并继续进行综合监测。5.7日常监测 5.7.1基本要求 锚杆支护的煤巷都应进行日常监测。制定日常监测方案,按技术要求组织实施。5.7.2 检测人员培训要求 对监测人员应进行培训,使其掌握测站安设、仪器操作、数据测读和数据处理方法。其他人员也应随时注意观察离层仪的变化,以便及早发现异常现象。5.8 异常情况 发现异

49、常情况,监测人员应立即向矿主管部门汇报,并分析出现异常的原因及其危害,提出处理办法并及时组织落实。5.9存档制度 各矿应保存监测数据,编制监测报告,并存档。6.煤巷锚杆支护施工质量检测 6.1检测职责 锚杆支护施工质量检测由矿主管部门负责。各矿应配备专职施工质量检测人员。各矿业集团公司应对专职检测人员进行培训,经考核合格者由矿业集团公司发给上岗证。6.2检测内容 锚杆支护施工质量检测的内容包括锚杆(索)锚固力检测、锚杆(索)安装几何参数检测、锚杆(索)预紧力矩或预紧力检测、锚杆(索)托板安装质量检测、组合构件和网安装质量检测、喷射混凝土的强度和喷层厚度检测。6.3检测要求 锚杆支护施工质量应及

50、时按设计要求进行检测。检测结果不符合设计要求,应停止施工,进行整改。施工质量不达标的,应及时采取补救措施。6.4锚杆锚固力检测 6.4.1采用锚杆拉拔计进行锚杆锚固力检测。检测方法参见附录A。6.4.2 锚杆锚固力检测抽样率为3%,每300根顶、帮锚杆各抽样一组(共9根)进行检查,不足300根时,按300根进行;6.4.3锚杆锚固力均不低于设计锚固力为合格;如有一根低于设计锚固力,应重新抽样检测,如重新检测的锚杆锚固力均不低于锚杆设计锚固力为合格,如仍有一根不合格则判锚杆施工安装质量为不合格。6.5锚杆安装几何参数检测 6.5.1锚杆安装几何参数检测内容包括锚杆间距、排距、锚杆安装角度和锚杆外

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(煤矿掘进顶板管理(课堂)课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|