《角平分线的性质1》赛课一等奖创新课件.pptx

上传人(卖家):云出其山 文档编号:3977095 上传时间:2022-10-31 格式:PPTX 页数:33 大小:599.15KB
下载 相关 举报
《角平分线的性质1》赛课一等奖创新课件.pptx_第1页
第1页 / 共33页
《角平分线的性质1》赛课一等奖创新课件.pptx_第2页
第2页 / 共33页
《角平分线的性质1》赛课一等奖创新课件.pptx_第3页
第3页 / 共33页
《角平分线的性质1》赛课一等奖创新课件.pptx_第4页
第4页 / 共33页
《角平分线的性质1》赛课一等奖创新课件.pptx_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、角的平分线的性质角的平分线的性质下图是一个平分角的仪器,其中下图是一个平分角的仪器,其中AB=AD,BC=DC,将点,将点A 放在角的顶点,放在角的顶点,AB 和和AD 沿沿着角的两边放下,沿着角的两边放下,沿AC 画一条射线画一条射线AE,AE 就是就是DAB 的平分线你能说明它的道理吗?的平分线你能说明它的道理吗?ABDCE尺规作角的平分线尺规作角的平分线画法:画法:以为圆心,适当以为圆心,适当长为半径作弧,交于,长为半径作弧,交于,交于交于分别以,为分别以,为圆心大于圆心大于 1/2 的长的长为半径作弧两弧在为半径作弧两弧在的内部交于的内部交于作射线作射线射线即为所求射线即为所求 画画A

2、OB平分线平分线OC,在,在OC上任取一点上任取一点P,过,过P向角的两向角的两边作垂线段边作垂线段PD、PE,你能得出什么结论?,你能得出什么结论?思考思考AOBPEDC C你能证明吗?你能证明吗?将将AOB 沿沿OC 对折,我发现对折,我发现PD与与PE 重合,重合,即即PD与与PE相相等等.图图1-26 PDOA,PEOB,PDO=PEO=90.在在PDO和和PEO中,中,PDO=PEO,DOP=EOP,OP=OP,PDO PEO.PD=PE.我们来证明这个结论我们来证明这个结论.图图1-26图图1-26用符号语言表示为:用符号语言表示为:AOBPED121=2 PD OA,PE OBP

3、D=PE.OC是是AOB的平分线,的平分线,点点P在在OC上上,PD OA,PE OBPD=PE.C角平分线的性质定理:角平分线的性质定理:角的平分线上的点到角的两边的角的平分线上的点到角的两边的距离距离相等相等1、AD平分平分CAB,DCAC,DEAB _(_)ACDEB12DC=DE角平分线上的点到角的两边的距离相等角平分线上的点到角的两边的距离相等2、判断题、判断题()如图,如图,AD平分平分BAC(已知)(已知)BD =DC ,()ADCB角的平分线上的点到角的角的平分线上的点到角的两边的距离相等。两边的距离相等。如图,如图,DCAC,DBAB (已知)(已知)=,()在角的平分线上的

4、点到这在角的平分线上的点到这个角的两边的距离相等。个角的两边的距离相等。ADCBBD CD()AD平分平分BAC,DCAC,DBAB (已知)(已知)=,()DBDC在角的平分线上的点到这个在角的平分线上的点到这个角的两边的距离相等。角的两边的距离相等。ADCB不必再证全等不必再证全等例例1.如图,如图,ABC的角平分线的角平分线BM、CN相交于点相交于点P.求证:点求证:点P到三边到三边AB、BC、CA的距离相等的距离相等.DEFABCPMN例例2.2.已知:在等腰已知:在等腰RtRtABCABC中,中,AC AC BCBC C C9090,ADAD平分平分 BACBAC,DEABDEAB于

5、点于点E E。求证:求证:BDBDDE DE ACAC变式变式 已知已知AB 15cm,求求DBE的周长的周长EDCBA动脑筋动脑筋 角的内部到角的两边距离相等的点在这个角的平角的内部到角的两边距离相等的点在这个角的平分线上吗?分线上吗?如图如图1-27,点,点P 在在AOB 的内部,的内部,作作PDOA,PEOB,垂足分别为点垂足分别为点D,E.若若PD=PE,那么点那么点P在在AOB的平分线上吗?的平分线上吗?图图1-27在在RtPDO和和RtPEO中,中,OP=OP,PD=PE,RtPDO RtPEO.PDOA,PEOB,PDO=PEO=90.如图如图1-27,过点,过点O,P作射线作射

6、线OC.AOC=BOC.OC是是AOB的平分线,即点的平分线,即点P在在AOB的平分线的平分线OC上上.图图1-27 角的内部到角的两边距离相等的点在角的内部到角的两边距离相等的点在角的平分线上。角的平分线上。角平分线的判定定理:角平分线的判定定理:AOBPDEC用符号语言表示为:用符号语言表示为:PD OA,PE OB且且PD=PE OC平分平分AOB.由此得到由此得到角平分线的性质定理的逆定理:角平分线的性质定理的逆定理:已知:如图在四边形已知:如图在四边形 ABCD中,中,ABAD,ABBC,ADDC求证:点求证:点 A在在DCB的平分线上的平分线上 举举例例例例1 如图如图1-28,B

7、AD=BCD=90,1=2.(1)求证:点)求证:点B在在ADC的平分线上;的平分线上;(2)求证:)求证:BD是是ABC的平分线的平分线.图图1-28证明:证明:在在ABC中,中,1=2,BA=BC.又又 BAAD,BCCD,点点B在在ADC的平分线上的平分线上.图图1-28(1)求证:点)求证:点B在在ADC的平分线上;的平分线上;图图1-28证明:证明:在在RtBAD和和RtBCD中,中,BA=BC,BD=BD,RtBAD RtBCD.ABD=CBD.BD是是ABC的平分线的平分线.(2)求证:)求证:BD是是ABC的平分线的平分线.例例 已知:如图,已知:如图,ABC的角平分线的角平分

8、线BM、CN相交于相交于点点P.求证:点求证:点P到三边到三边AB、BC、CA的距离相等的距离相等.ABCPMNABCPMN练习:练习:已知:如图,已知:如图,ABC的角平分线的角平分线BM、CN相相交于点交于点P.求证:点求证:点P到三边到三边AB、BC、CA的距离相等的距离相等.证明:证明:过点过点P作作PD、PE、PF分别垂直于分别垂直于AB、BC、CA,垂足分别为,垂足分别为D、E、FFDEDE 又又BM是是ABC的角平分线,点的角平分线,点P在在BM上上 PD=PE(角平分线上的点到角的两边角平分线上的点到角的两边 的距离相等)的距离相等)同理同理 PE=PF.PD=PE=PF.即点

9、即点P到边到边AB、BC、CA的距离相等的距离相等想一想,点想一想,点P在在A A 的的 平分线上吗?这平分线上吗?这说明三角形的三条角平分线有什么关系?说明三角形的三条角平分线有什么关系?练习练习:如图:如图,已知,已知ABCABC的外角的外角CBDCBD和和BCEBCE的平分线相交于点的平分线相交于点F F,求证:点求证:点F F在在DAEDAE的平分线上的平分线上 证明:过点F作FGAE于G,FHAD于H,FMBC于MGHM点F在BCE的平分线上,FGAE,FMBCFGFM又点F在CBD的平分线上,FHAD,FMBCFMFHFGFH 点F在DAE的平分线上解:设要截取的长度为解:设要截取

10、的长度为m,则:则:练习:练习:要在区建一个集贸市场,使它要在区建一个集贸市场,使它到公路和铁路到公路和铁路距离相等距离相等,且离公路和铁且离公路和铁路的交叉处路的交叉处500米,该集贸市场应建在米,该集贸市场应建在何处?(比例尺何处?(比例尺 1:20 000)公路铁路200001500X解得:解得:0.025m 2.5cm则点即为所求的点则点即为所求的点拓展思维拓展思维:若把在区去掉,有几处若把在区去掉,有几处A点点解解 作作AOB的角平分线,交的角平分线,交MN于一点,则这点即为所于一点,则这点即为所 求作的点求作的点P.(提示:用尺规作图)(提示:用尺规作图)练习练习1.如图,在直线如

11、图,在直线MN上求作一点上求作一点P,使点,使点P到到AOB两边两边 的距离相等的距离相等.P2.如图,在如图,在ABC 中,中,AD 平分平分BAC,DEAB 于点于点E,DFAC 于点于点F,BD=CD.求证:求证:AB=AC.证明证明 点点D在在BAC的平分线上,的平分线上,DEAB,DFAC,DE=DF.AB=AC.在在RtBED和和RtCFD中,中,BD=CD,DE=DF,RtBED RtCFD.B=C.动脑筋动脑筋 如图如图1-29,已知已知EFCD,EFAB,MNAC,M是是EF 的中点的中点.需添加一个什么条件,需添加一个什么条件,就可使就可使CM,AM分别为分别为ACD和和C

12、AB的平分线呢?的平分线呢?图图1-29图图1-29 MECD,MNCA,同理可得同理可得AM是是CAB的平分线的平分线.可以添加条件可以添加条件MN=ME(或(或MN=MF).M在在ACD的平分线上,即的平分线上,即CM是是ACD的平分线的平分线.图图1-29如图如图1-30,在,在ABC 的外角的外角DAC 的平分线上任取的平分线上任取一点一点P,作,作PEDB,PFAC,垂足分别为点垂足分别为点E,F.试探索试探索BE+PF与与PB的大小关系的大小关系.例例2 PE=PF.在在EBP中,中,BE+PEPB,BE+PFPB.AP是是DAC的平分线,的平分线,又又PEDB,PFAC,解解图图

13、1-30举举例例利用结论,解决问题练一练 1、如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应在何处修建?想一想 在确定度假村的位置时,一定要画出三个角的平分线吗?你是怎样思考的?你是如何证明的?拓展与延伸2、直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有:()A.一处 B.两处 C.三处 D.四处分析:由于没有限制在何处选址,故要求的地址共有四处。练习练习3 如图,求作一点P,使PC=PD,并且点P到AOB的两边的距离相等.CDABO练习练习1.如图,如图,E 是是AOB 的平

14、分线上一点,的平分线上一点,ECOA 于于点点C,EDOB 于点于点D.求证:(求证:(1)ECD=EDC;(2)OC=OD.(2)在)在RtOED和和RtOEC中,中,OE=OE,ED=EC,RtOED RtOEC(HL).).OD=OC.证明证明(1)点点E在在BOA的平分线上,的平分线上,ECAO,EDOB,ED=EC.ECD=EDC.EDC 是个等腰三角形是个等腰三角形.2.如图,在如图,在ABC 中,中,ADDE,BEDE,AC,BC 分别平分分别平分BAD,ABE,点,点C在线段在线段DE上上.求证:求证:AB=AD+BE.M证明证明 作作CMAB于点于点M.AC,BC 分别平分分别平分BAD,ABE,CD=CM,CE=CM.在在RtACD和和RtACM中,中,CM=CD,AC=AC,RtACD RtACM.AD=AM.同理,同理,BE=BM.又又 AB=AM+BM,AB=AD+BE.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 人教版(2024) > 八年级上册
版权提示 | 免责声明

1,本文(《角平分线的性质1》赛课一等奖创新课件.pptx)为本站会员(云出其山)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|