高应变动测法培训课件.ppt

上传人(卖家):晟晟文业 文档编号:4033589 上传时间:2022-11-05 格式:PPT 页数:41 大小:561.50KB
下载 相关 举报
高应变动测法培训课件.ppt_第1页
第1页 / 共41页
高应变动测法培训课件.ppt_第2页
第2页 / 共41页
高应变动测法培训课件.ppt_第3页
第3页 / 共41页
高应变动测法培训课件.ppt_第4页
第4页 / 共41页
高应变动测法培训课件.ppt_第5页
第5页 / 共41页
点击查看更多>>
资源描述

1、 高应变动测法是用重锤冲击桩顶,使桩高应变动测法是用重锤冲击桩顶,使桩土产生足够的相对位移,以充分激发桩周土阻力土产生足够的相对位移,以充分激发桩周土阻力和桩端支承力,通过分别安装在桩身两侧的力和和桩端支承力,通过分别安装在桩身两侧的力和加速度传感器接收量测力和桩、土系统响应信号,加速度传感器接收量测力和桩、土系统响应信号,从而计算并分析桩身结构完整性和单桩竖向承载从而计算并分析桩身结构完整性和单桩竖向承载力。力。高应变试验方法:高应变试验方法:(1 1)动力打桩公式法:)动力打桩公式法:量测打桩最终贯入度,锤重和锤落高。用它估量测打桩最终贯入度,锤重和锤落高。用它估算单桩极限承载力。算单桩极

2、限承载力。(2 2)波动方程分析法()波动方程分析法(smithsmith法):法):量测最终贯入度,锤重、落高和设定桩、土、量测最终贯入度,锤重、落高和设定桩、土、垫层一系列参数。用它预测单桩极限承载力;打桩垫层一系列参数。用它预测单桩极限承载力;打桩拉、压应力和沉桩能力分析。拉、压应力和沉桩能力分析。(3 3)波动方程半经验解析法()波动方程半经验解析法(casecase法):法):量测桩顶力和速度(加速度信号积分)时程波量测桩顶力和速度(加速度信号积分)时程波形。可估算单桩极限承载力和桩身结构完整性作出形。可估算单桩极限承载力和桩身结构完整性作出评价。评价。(4 4)波形拟合法:)波形拟

3、合法:量测桩顶力和速度时程波形。可判定单桩极量测桩顶力和速度时程波形。可判定单桩极限承载力,评价桩身结构完整性,估计桩侧与桩限承载力,评价桩身结构完整性,估计桩侧与桩端土阻力分布和摸拟静载荷试验的端土阻力分布和摸拟静载荷试验的Q-SQ-S曲线。曲线。(5 5)静)静动试桩法:动试桩法:量测桩顶力和位移时间程波形,可判定单桩量测桩顶力和位移时间程波形,可判定单桩极限承载力。极限承载力。目前采用较多的目前采用较多的CASECASE法,波形拟合法较为广法,波形拟合法较为广泛。泛。一、现场检测技术一、现场检测技术 1 1、锤头、锤头 锤头形状制作按锤头形状制作按建筑基桩检测技术规范建筑基桩检测技术规范

4、(JGJ106-2003JGJ106-2003)中,对锤重和锤形选择以强)中,对锤重和锤形选择以强制性条文的形式作为严格规定,锤头材质均匀,制性条文的形式作为严格规定,锤头材质均匀,形状对称,锤底平整,高径(宽)比不得小于形状对称,锤底平整,高径(宽)比不得小于1 1,采用铸铁或铸钢制作。锤高、宽比一般,采用铸铁或铸钢制作。锤高、宽比一般2 2:1 1或或1.51.5:1 1。2 2、起重设备、起重设备 锤头起吊一般用支架或汽吊、钩机。锤头起吊一般用支架或汽吊、钩机。支架:必须注意支架导向轨润滑预防支架支架:必须注意支架导向轨润滑预防支架轨道磨擦过大而产生高频横波和纵波,横波沿轨道磨擦过大而产

5、生高频横波和纵波,横波沿垂锤轴向往返传播,纵波沿重锤轴向传播,在垂锤轴向往返传播,纵波沿重锤轴向传播,在力曲线上表现为从重锤冲击前到之后,使力曲力曲线上表现为从重锤冲击前到之后,使力曲线始终存在一个高频复杂的振动波干扰。线始终存在一个高频复杂的振动波干扰。汽吊及钩机:锤的轴心线与桩的轴心要重汽吊及钩机:锤的轴心线与桩的轴心要重合,如稍偏心,出现产生偏心力,两边对称的合,如稍偏心,出现产生偏心力,两边对称的力和加速度传感器得不到大小相同信号,并且力和加速度传感器得不到大小相同信号,并且有可能产生机械振动干扰、出现力曲线上存在有可能产生机械振动干扰、出现力曲线上存在高频信号干扰。高频信号干扰。3

6、3、桩垫、桩垫 桩垫是影响实测波形重要因素:其作用有桩垫是影响实测波形重要因素:其作用有二个:一是使锤击力分布均匀、调整锤击过程二个:一是使锤击力分布均匀、调整锤击过程的持续时间,将锤击能量更有效地往桩顶传递。的持续时间,将锤击能量更有效地往桩顶传递。二是缓冲锤体的冲击力,使打桩压应力不超过二是缓冲锤体的冲击力,使打桩压应力不超过容许值。选用材料有胶合板、薄木板,特制的容许值。选用材料有胶合板、薄木板,特制的布垫或纸垫;还可以标准细砂找平(厚度布垫或纸垫;还可以标准细砂找平(厚度10-10-30mm30mm为好)为好)4 4、桩头处理、桩头处理 对于混凝土灌注桩先凿掉桩顶部的破碎层对于混凝土灌

7、注桩先凿掉桩顶部的破碎层和软弱浮浆层,桩头顶面平整、桩头中轴线与和软弱浮浆层,桩头顶面平整、桩头中轴线与桩身上部的中轴线应重合,桩头主筋应全部直桩身上部的中轴线应重合,桩头主筋应全部直至桩顶混凝土保护层之下,各主筋应在同一高至桩顶混凝土保护层之下,各主筋应在同一高度,距桩顶度,距桩顶1 1倍桩径范围内,用厚度倍桩径范围内,用厚度3 35mm5mm钢板钢板围裹或距桩顶围裹或距桩顶1.51.5倍桩径范围内设置箍筋,间距倍桩径范围内设置箍筋,间距不大于不大于100mm100mm,桩顶设置钢筋网片,桩顶设置钢筋网片2-32-3层,间距层,间距6060100mm100mm,桩头混凝土强度等级比桩身混凝土

8、,桩头混凝土强度等级比桩身混凝土提高提高1 12 2级,且不低于级,且不低于C30C30,桩头侧点处截面尺,桩头侧点处截面尺寸与原桩截面尺寸一致。预制桩桩对不受损,寸与原桩截面尺寸一致。预制桩桩对不受损,可以使用。可以使用。5 5、传感器安装、传感器安装 按国家标准按国家标准建筑基桩检测技术规范建筑基桩检测技术规范(JGJ106-2003JGJ106-2003)附)附F F有关要求。有关要求。(1 1)传感器必须安装在离桩顶)传感器必须安装在离桩顶2 23 3倍桩径位置,对于大直径桩,传倍桩径位置,对于大直径桩,传感器与桩顶之间距离可适当减少,但不得小于感器与桩顶之间距离可适当减少,但不得小于

9、1 1倍桩径。如遇到倍桩径。如遇到桩身截面突变处,要避开,尺量桩身截面一致处为好。避开桩桩身截面突变处,要避开,尺量桩身截面一致处为好。避开桩顶附近复杂的应力应变状态。顶附近复杂的应力应变状态。(2 2)传感器必须对称安装在桩两侧面,应变与加速度传感器的中心)传感器必须对称安装在桩两侧面,应变与加速度传感器的中心应位于同一水平线上,应变和加速度传感器之间大于应位于同一水平线上,应变和加速度传感器之间大于80mm80mm。传。传感器的中心轴应桩中心轴保持平衡。感器的中心轴应桩中心轴保持平衡。(3 3)各传感器的安装面材质应均匀,密实、平整、并与桩轴线平行,)各传感器的安装面材质应均匀,密实、平整

10、、并与桩轴线平行,否则应采用磨光机打磨平整。否则应采用磨光机打磨平整。(4 4)传感器安装使用螺栓的钻孔与桩侧表面垂直,牢固。不能由于)传感器安装使用螺栓的钻孔与桩侧表面垂直,牢固。不能由于锤击振动引起松动或接触不良、尤其力传感器位置有良好的平锤击振动引起松动或接触不良、尤其力传感器位置有良好的平整面。整面。(5 5)安装完毕后,检查应变传感器紧贴程度是否松动,对其初始应)安装完毕后,检查应变传感器紧贴程度是否松动,对其初始应变值进行监视,保证锤击时可测轴向变形余量。混凝土桩大于变值进行监视,保证锤击时可测轴向变形余量。混凝土桩大于+10001000;钢桩大于;钢桩大于+15001500。6

11、6、测试参数选取、测试参数选取 测试前对设定相当重要,要认真结合仪器测试前对设定相当重要,要认真结合仪器使用动能要求进行设定选取。使用动能要求进行设定选取。(1 1)采样时间间隔)采样时间间隔5050200200,信号采样点数不,信号采样点数不少于少于10241024点;点;(2 2)传感器的设定值按计量检定结果设定;)传感器的设定值按计量检定结果设定;(3 3)测点处的桩截面尺寸按实际测量确定,波速,)测点处的桩截面尺寸按实际测量确定,波速,质量密度和弹性模量设定;质量密度和弹性模量设定;(4 4)测点以下的桩长和截面积按设计文件或施工)测点以下的桩长和截面积按设计文件或施工记录提供数据设定

12、。记录提供数据设定。桩身材料弹性模量按公式计算桩身材料弹性模量按公式计算 E=E=22 E E桩身材料弹性模量(桩身材料弹性模量(KPaKPa)桩身应力波传播速度(桩身应力波传播速度(m/sm/s)桩身材料质量密度(桩身材料质量密度(t/m3t/m3)7 7、仪器工作状态检查。、仪器工作状态检查。在正式试验之前,检查仪器是否正常工作状态,对已在正式试验之前,检查仪器是否正常工作状态,对已连接好的各种传感器核验,对检测仪进行仪器自检,并连接好的各种传感器核验,对检测仪进行仪器自检,并观测量测系统置于正常。观测量测系统置于正常。8 8、锤击择选、锤击择选 按国家标准按国家标准建筑基桩检测技术规范建

13、筑基桩检测技术规范(JGJ106-2003JGJ106-2003)中附录条文进行,具体大致如下:中附录条文进行,具体大致如下:对于摩擦桩或端承摩擦桩,锤重一般为单桩极限承载力对于摩擦桩或端承摩擦桩,锤重一般为单桩极限承载力的的1%1%,但摩擦端承桩的锤重还要大些,才有可能把桩打一,但摩擦端承桩的锤重还要大些,才有可能把桩打一定的贯入度。定的贯入度。锤高大小是影响峰值和桩顶速度的重要因素。落高过小,锤高大小是影响峰值和桩顶速度的重要因素。落高过小,能量不足;落高过大,力峰值过大,易击碎桩顶。一般的能量不足;落高过大,力峰值过大,易击碎桩顶。一般的落高落高1.0-2.0m1.0-2.0m之间,最高

14、不应大于之间,最高不应大于2.5m2.5m,最好重锤低打。,最好重锤低打。选择锤重和落高要使桩贯入度不小于选择锤重和落高要使桩贯入度不小于2.5mm2.5mm,但也不要,但也不要大于大于10mm10mm。贯入度过小、土强度发挥不充分,贯入度太大。贯入度过小、土强度发挥不充分,贯入度太大不满足波动理论、实测波形失真不满足波动理论、实测波形失真 。对于嵌岩桩,在选用锤重和落高时要注意不能把嵌固段对于嵌岩桩,在选用锤重和落高时要注意不能把嵌固段打动,否则嵌固力不能恢复大大降低桩承载力。打动,否则嵌固力不能恢复大大降低桩承载力。9 9、检测时应及时检查采集数据的质量。、检测时应及时检查采集数据的质量。

15、高应变动测用重锤冲击,当每对受检桩记录高应变动测用重锤冲击,当每对受检桩记录冲击有效锤击信号后检查所采集信号进行观察分冲击有效锤击信号后检查所采集信号进行观察分析,发现测试曲线采集不理想,应认真检查桩头、析,发现测试曲线采集不理想,应认真检查桩头、传感器有无异常。一般出现较多异常原因:传感器有无异常。一般出现较多异常原因:传感器安装处混凝土开裂或出现严重塑性变形使传感器安装处混凝土开裂或出现严重塑性变形使力曲线最终未归零;力曲线最终未归零;严重锤击偏心,两侧力信号幅值相差超过严重锤击偏心,两侧力信号幅值相差超过1 1倍;倍;触变效应的影响、预制桩在多次锤击下承载力下触变效应的影响、预制桩在多次

16、锤击下承载力下降;降;四通道测试数据不全。四通道测试数据不全。1010、现场测曲线判断。、现场测曲线判断。(1 1)力传感器未上紧,波形产生自振;)力传感器未上紧,波形产生自振;(2 2)波形信号不回零,表明靠近测点附近混凝土)波形信号不回零,表明靠近测点附近混凝土有塑性变形;有塑性变形;(3 3)波形峰值处力大于速度,表明靠近测点附近)波形峰值处力大于速度,表明靠近测点附近桩身有扩颈或垫层和桩相连;桩身有扩颈或垫层和桩相连;(4 4)波形峰值处速度大于力,表明靠近测点附近)波形峰值处速度大于力,表明靠近测点附近桩身桩相连。桩身桩相连。(5 5)波形峰值处速度大于力,力波不回零,表明)波形峰值

17、处速度大于力,力波不回零,表明测点附近桩身有裂缝,或传感器安在新接桩头上,测点附近桩身有裂缝,或传感器安在新接桩头上,接头连接没有做好。接头连接没有做好。一般正常一般正常F F和和ZVZV曲线:曲线:波形没有明显的高频杂波信号干扰;波形没有明显的高频杂波信号干扰;两组两组F F和和ZVZV时程波形最终回归零值;时程波形最终回归零值;两组两组F F和和ZVZV时程波形的峰值前应重合,峰值后两时程波形的峰值前应重合,峰值后两者协调;者协调;F F曲线一般为正值、因为在桩顶附近应力为压力;曲线一般为正值、因为在桩顶附近应力为压力;在桩底反射信号出现前、在桩底反射信号出现前、ZVZV曲线应在曲线应在F

18、 F曲线的下曲线的下方,它差值的一半等于对应时刻接受到的阻力值;方,它差值的一半等于对应时刻接受到的阻力值;由加速度信号积分得到的位移曲线一般是先急剧由加速度信号积分得到的位移曲线一般是先急剧上升,接着突然下降,下降到最小值后又缓缓上上升,接着突然下降,下降到最小值后又缓缓上升,最后稳定在一条水平线上。升,最后稳定在一条水平线上。二、二、CASECASE法法CASECASE数学模型数学模型 CASECASE法的数学模型较为简单,只考虑桩法的数学模型较为简单,只考虑桩和桩周土的简化模型。和桩周土的简化模型。(1 1)把桩假定为均匀连续的一维杆,并且物理参数)把桩假定为均匀连续的一维杆,并且物理参

19、数在测试的时间内是不变化的,称为时不变。在测试的时间内是不变化的,称为时不变。(2 2)土的模型)土的模型 试桩时认为桩、土界面发生破坏,桩的承载力试桩时认为桩、土界面发生破坏,桩的承载力为桩的支承能力。为桩的支承能力。实测总阻力近似看成静阻力和动阻力两部分组实测总阻力近似看成静阻力和动阻力两部分组成。成。R R总总=R=R静静+R+R动动 静阻力静阻力RSRS简化为理想刚塑性模型,即当土中应力达某一数值简化为理想刚塑性模型,即当土中应力达某一数值后,不随变形增加而增加,忽略弹性变形(图后,不随变形增加而增加,忽略弹性变形(图a a),于是于是 R R(Z)(Z)=R=Ru u 动阻力动阻力R

20、dRd简化为与桩的运动速度成线性关系的粘滞阻尼模型,简化为与桩的运动速度成线性关系的粘滞阻尼模型,用一个阻尼表示(图用一个阻尼表示(图b b):R Rd d=J=J(z(z)V V(z)z)式中:式中:J J(Z)(Z)深度深度Z Z处桩侧土粘滞阻尼系数(处桩侧土粘滞阻尼系数(kNkNs/ms/m),为直线斜率。),为直线斜率。V V(Z)(Z)深度深度Z Z处桩身运动速度(处桩身运动速度(m/sm/s)动力试桩实际用的是动力试桩实际用的是smithsmith阻尼系数和阻尼系数和casecase阻尼系数:阻尼系数:当用当用smithsmith阻尼系数时,阻尼系数时,R Rd d=J=JS(Z)

21、S(Z)RuRu(Z)(Z)V V(Z)(Z)当用当用casecase阻尼系数时,阻尼系数时,R Rd d=J=JC(Z)C(Z)Z ZV V(Z)(Z)式中:式中:J JC(ZC(Z)casecase阻尼系数是无量纲参数阻尼系数是无量纲参数 Z Z桩身阻抗(桩身阻抗(kNkNs/ms/m)对上述对上述casecase法数学模型成立,用法数学模型成立,用casecase法分析方法分析,法分析方法分析,把试桩看成三条基本假定:把试桩看成三条基本假定:桩身是等效阻抗的(桩身是等效阻抗的(Z=Z=),),Z Z沿桩身不变。该沿桩身不变。该假定对钢桩,预制桩和预应力管桩在桩身无缺陷性况下假定对钢桩,预

22、制桩和预应力管桩在桩身无缺陷性况下基本适用;而灌注桩断面是不均匀,桩身即使无任何缺基本适用;而灌注桩断面是不均匀,桩身即使无任何缺陷也难以达到,在该假定条件下,实测信号除了土阻力陷也难以达到,在该假定条件下,实测信号除了土阻力和桩底信号的反射波外,设有任何阻抗变化的反射波。和桩底信号的反射波外,设有任何阻抗变化的反射波。动阻力集中在桩底,忽略桩侧动阻力。动阻力集中在桩底,忽略桩侧动阻力。忽略应力波在传播过程的能量损耗,包括桩身中内阻忽略应力波在传播过程的能量损耗,包括桩身中内阻尼损耗向桩周土的逸散。在该假定条件下,应力波传播尼损耗向桩周土的逸散。在该假定条件下,应力波传播过程没有波形畸变和幅值

23、的变化。过程没有波形畸变和幅值的变化。CaseCase法单桩承载力确定:法单桩承载力确定:CaseCase法动测试桩,在有足够能量锤击桩顶时,法动测试桩,在有足够能量锤击桩顶时,可以激发出桩周土阻力,实测桩顶附近的力和速可以激发出桩周土阻力,实测桩顶附近的力和速度程波形。度程波形。由波动方程和行波理论可推导得到由波动方程和行波理论可推导得到casecase法单桩极限承载力公式:法单桩极限承载力公式:R Rn n=R=RJ JC C(2F(2Ft tR)R)R=1/2F R=1/2F(t1)(t1)F F(t2)(t2)Z/2(VZ/2(V1 1V V2 2)式中式中:R:Rn n单桩极限承载力

24、单桩极限承载力 R R打入总阻力打入总阻力 F F(t1)(t1)、V V(t1)(t1)t t1 1时刻力和速度值时刻力和速度值 F F(t2)(t2)、V V(t2)(t2)t t2 2时刻桩顶反射处的力和速度值。时刻桩顶反射处的力和速度值。t t1 1时刻可取在第一峰值,第二峰值或最大峰值处。三种时刻可取在第一峰值,第二峰值或最大峰值处。三种取法一般情况其结果相差不大,如果有明显差别、应选择提取法一般情况其结果相差不大,如果有明显差别、应选择提供最大静阻力的位置。供最大静阻力的位置。t t2 2为桩底反射点位置,为桩底反射点位置,(t(t1 1+2L/c)+2L/c)t t1 1和和t

25、t2 2确定后,在波形上确定后,在波形上F F(t1)(t1)、F F(t2)(t2)、V V(t1)(t1)、V V(t2)(t2)都有桩都有桩身阻抗身阻抗Z Z可根据桩径和波速计算得到:可根据桩径和波速计算得到:casecase阻尼系数阻尼系数J JC C可由可由静、动对比结果反算求得或经验取值。静、动对比结果反算求得或经验取值。一般一般casecase阻尼系数通过大量静、动对数据各土层取值阻尼系数通过大量静、动对数据各土层取值范围:范围:凭经验选取凭经验选取casecase阻尼系数要慎重,望大家大量进行静阻尼系数要慎重,望大家大量进行静动对比试验资料,建立地方动对比试验资料,建立地方ca

26、secase阻尼系数。阻尼系数。CaseCase法分析有多种方法:法分析有多种方法:阻尼系数法(阻尼系数法(RSPRSP),最大阻尼力法(最大阻尼力法(RMXRMX),卸载法卸载法RSU,RSU,自动法(自动法(RAURAU)。)。但但casecase法推算基本准确,最好采用其它方法进行计算。法推算基本准确,最好采用其它方法进行计算。三、波形拟合法:三、波形拟合法:波形拟合评价单桩极限承载力,目前认为是最先进技术,波形拟合评价单桩极限承载力,目前认为是最先进技术,它具多解性,无唯一解。在拟合过程可调整的参数有侧阻,它具多解性,无唯一解。在拟合过程可调整的参数有侧阻,端阻,最大弹性位,土阻尼系数

27、,桩截面积,波速和混凝土端阻,最大弹性位,土阻尼系数,桩截面积,波速和混凝土弹性模量等,改变以土任何一个参数都可能使某些单元段计弹性模量等,改变以土任何一个参数都可能使某些单元段计算波形和实测波形吻合。算波形和实测波形吻合。1 1、波形拟合基本原理、波形拟合基本原理 波形拟合现场测试和数据采集与波形拟合现场测试和数据采集与casecase法完全一样,得到法完全一样,得到的是两根实测波形的是两根实测波形F(t)F(t)和和V(t)V(t)。实测波形包含有桩身阻抗变。实测波形包含有桩身阻抗变化和土阻力(桩承载力)信号。化和土阻力(桩承载力)信号。把桩划分若干分段(单元),假定各分段的桩、土参数。把

28、桩划分若干分段(单元),假定各分段的桩、土参数。如桩身阻抗、土的阻力及沿桩身分布,最大弹限如桩身阻抗、土的阻力及沿桩身分布,最大弹限QKQK和阻尼系和阻尼系数数JSJS或或JCJC等。用实测的波形速度或力,作为已知边界条件进等。用实测的波形速度或力,作为已知边界条件进行波动程序计算,求得力或速度波形。也就是用计算波形法行波动程序计算,求得力或速度波形。也就是用计算波形法拟合实测波形,两者进行比较,直到两者吻合程序达到满意拟合实测波形,两者进行比较,直到两者吻合程序达到满意为止。从而得到单根限承载力,桩侧阻力分布,计算的荷载为止。从而得到单根限承载力,桩侧阻力分布,计算的荷载沉降曲线(沉降曲线(

29、Q QS S曲线)和桩身结构完整性。曲线)和桩身结构完整性。2 2、波形拟合法的数学模型。、波形拟合法的数学模型。波形拟合法的数学模型分为桩身和土的模型波形拟合法的数学模型分为桩身和土的模型(1 1)桩身模型)桩身模型 波形拟合法采用波形拟合法采用“连续连续”,把桩看作连续的、,把桩看作连续的、不变的,线性的和一维的弹性杆件。把桩划分为不变的,线性的和一维的弹性杆件。把桩划分为NpNp分段长度保持应力波在通过每个分段时所需的时间分段长度保持应力波在通过每个分段时所需的时间相等,分段本身阻抗是恒定的,但各分段阻抗可以相等,分段本身阻抗是恒定的,但各分段阻抗可以不同。桩身内阻尼引起应力波的衰减可用

30、衰减率模不同。桩身内阻尼引起应力波的衰减可用衰减率模拟。有的计算软件,还可考虑裂缝在受力过程中的拟。有的计算软件,还可考虑裂缝在受力过程中的闭合张开程度,局部不密实的混凝土应力闭合张开程度,局部不密实的混凝土应力应变的应变的非线性关系问题。非线性关系问题。(a a)、)、(b)(b)是桩侧阻和桩端阻的静阻力模型。当土位移是桩侧阻和桩端阻的静阻力模型。当土位移Q Qkmkm小于最小于最大弹性位移大弹性位移Q Qk k时、应力应变呈线性关系,一旦位移达到最大弹性位移时、应力应变呈线性关系,一旦位移达到最大弹性位移Q Qk k值,应力不再随应变增加而增加,土进入塑性状态。值,应力不再随应变增加而增加

31、,土进入塑性状态。R Rk(z)k(z)=(u=(u(z)(z)/Q/Qk k)R)Rukuk (u (u(z)(z)QQk k)R Rk(z)k(z)=R=Rukuk (u (u(z)(z)=Q=Qk k)式中:式中:R Rukuk桩在桩在Z Z深度处土的极限静阻力(深度处土的极限静阻力(mmmm)Q Qk k土的最大弹性位移(土的最大弹性位移(mmmm)u u(z)(z)深度深度Z Z处土位移处土位移(mm)(mm)实际土是弹塑物质,应力应变关系实际上是非线性关系。加载和实际土是弹塑物质,应力应变关系实际上是非线性关系。加载和卸载过程表现出不同性质,以上的模型是很近似。当桩受锤击后,桩卸载

32、过程表现出不同性质,以上的模型是很近似。当桩受锤击后,桩身除向下运动(加载过程)外,还可产生回弹(卸载过程),所以计身除向下运动(加载过程)外,还可产生回弹(卸载过程),所以计算程序除了有加载弹限算程序除了有加载弹限Q Qk k(最大弹性位移),还给定卸载弹限(最大弹性位移),还给定卸载弹限Q Qkmkm(卸(卸载最大弹性位移)参数,在相同极限阻力条件下,载最大弹性位移)参数,在相同极限阻力条件下,Q QkmkmQ Qk k。桩身上、下运动有可能反复多次,所以条件考虑了反复加载程度桩身上、下运动有可能反复多次,所以条件考虑了反复加载程度(重加载水平)(重加载水平)R RL L和和R RLtLt

33、参数。参数。桩出现回弹,局部单元向上运动,桩侧开始桩出现回弹,局部单元向上运动,桩侧开始卸载,当桩土相对位移出现负值时,侧阻方向下卸载,当桩土相对位移出现负值时,侧阻方向下(卸载水平)。(卸载水平)。桩尖静阻力模型中图桩尖静阻力模型中图b b,由于桩尖不能受拉,由于桩尖不能受拉,不存在卸载水平,灌注桩桩底有可能存在沉渣或不存在卸载水平,灌注桩桩底有可能存在沉渣或虚土,预制桩由于打桩挤土效应会使桩上抬,桩虚土,预制桩由于打桩挤土效应会使桩上抬,桩尖产生缝隙。故分析中设置尖产生缝隙。故分析中设置“土隙土隙”参数参数GAPGAP。3 3、波形拟合法计算要考虑主要参数、波形拟合法计算要考虑主要参数 波

34、形拟合法中,为了使计算波形和实测波形吻合,波形拟合法中,为了使计算波形和实测波形吻合,优先调整的参数是各分段单元的侧阻力优先调整的参数是各分段单元的侧阻力R Rsksk,桩侧土阻尼,桩侧土阻尼系数系数J JC C,最大弹性位移最大弹性位移Q Qk k和桩端阻力和桩端阻力R Rutut,桩端土最大弹性,桩端土最大弹性位移位移Q Qt t、桩尖土阻尼系数、桩尖土阻尼系数J Jctct。调整土阻力调整土阻力R Rukuk、R Rutut 当某分段单元的侧阻当某分段单元的侧阻R Rukuk增加,该分段单元往后计算增加,该分段单元往后计算力波形力波形F Fc(t)c(t)一起升高;桩端土阻力一起升高;桩

35、端土阻力R Rutut增加,增加,2L/C2L/C处及其处及其后后F Fc(t)c(t)波形一起升高、而对波形一起升高、而对2L/C2L/C以前分段单元无影响。以前分段单元无影响。桩侧桩侧R Rukuk增加,使计算贯入度减少。增加,使计算贯入度减少。调整阻尼系数调整阻尼系数J JC C和和J JCtCt 动阻力大小和运动速度,阻尼系数成正比,某单元动阻力大小和运动速度,阻尼系数成正比,某单元桩侧或桩尖土阻尼系数桩侧或桩尖土阻尼系数J JC C和和J JCtCt增加,相应的增加,相应的F Fc(t)c(t)波形上升,波形上升,反之反之F Fc(t)c(t)下降。阻尼系数过低会使计算下降。阻尼系数

36、过低会使计算F Fc(t)c(t)波形后段产生波形后段产生低频振荡。桩头土阻尼系数增加会使计算的贯入度减小。低频振荡。桩头土阻尼系数增加会使计算的贯入度减小。阻尼系数阻尼系数J JC C值一般在值一般在0.010.012 2间变化。间变化。调整土的加载最大弹性位移调整土的加载最大弹性位移Q Qk k 当调整个别分段单元的当调整个别分段单元的Q Qk k值时,对计算力波形影响不值时,对计算力波形影响不大,连续调整许多分段单元大,连续调整许多分段单元Q Qk k值才对值才对F Fc(t)c(t)有显著影响。有显著影响。当当Q Qk k值增加时,使值增加时,使F Fc(t)c(t)波形逆时针方向转动

37、,即上部波形逆时针方向转动,即上部分段单元分段单元F Fc(t)c(t)波形下降,下部分段单元波形下降,下部分段单元F Fc(t)c(t)上升。上升。当当Q Qk k值减少时,使值减少时,使F Fc(t)c(t)波形顺时针方向转动,即上部波形顺时针方向转动,即上部分段单元分段单元F Fc(t)c(t)波形上升,下部分段单元波形上升,下部分段单元F Fc(t)c(t)下降。下降。当桩底土当桩底土Q Qkmkm值减小,会引起桩底土的快速加卸载,值减小,会引起桩底土的快速加卸载,使使2L/C2L/C处处F Fc(t)c(t)波形上升,稍后波形上升,稍后F Fc(t)c(t)波形下降。波形下降。桩底土

38、桩底土Q Qkmkm减小,使计算贯入度增大。无论是桩侧或减小,使计算贯入度增大。无论是桩侧或桩底土,其最大弹性位移值一般都在桩底土,其最大弹性位移值一般都在1 110mm10mm之间变化。之间变化。4 4、波形拟合法的桩阻抗变化。、波形拟合法的桩阻抗变化。桩身阻抗桩身阻抗Z=EZ=EA/C,A/C,当改变桩截面积当改变桩截面积A A或混或混凝土弹性模量凝土弹性模量E E或应力波速或应力波速C C都可使桩身阻抗变化。都可使桩身阻抗变化。桩身截面积变化:当某分段单元截面积增大,对应单桩身截面积变化:当某分段单元截面积增大,对应单元的计算力波形元的计算力波形F Fc(t)c(t)上,而下一单元相对上

39、单元为缩上,而下一单元相对上单元为缩颈,因此往下单元颈,因此往下单元F Fc(t)c(t),波形下降;桩尖位置截面积,波形下降;桩尖位置截面积增大,对增大,对F Fc(t)c(t)影响较大,使桩尖单元影响较大,使桩尖单元F Fc(t)c(t)上升。上升。桩身裂隙的影响:预制桩桩身裂缝,灌注桩桩身断桩,桩身裂隙的影响:预制桩桩身裂缝,灌注桩桩身断桩,可以加上裂隙模拟,下行压缩波遇到裂隙要反射上行可以加上裂隙模拟,下行压缩波遇到裂隙要反射上行拉力波,裂隙上面单元使计算力波拉力波,裂隙上面单元使计算力波F Fc(t)c(t)下降,裂隙下下降,裂隙下面单元面单元F Fc(t)c(t)上升。上升。土隙土

40、隙CAPCAP的影响:对灌注桩桩底可沉渣或虚土存在,的影响:对灌注桩桩底可沉渣或虚土存在,预制桩由于挤土效应,地表面土上升,使桩上抬,桩预制桩由于挤土效应,地表面土上升,使桩上抬,桩尖形成土隙,拟合程序增加上土隙,使端阻力发挥迟尖形成土隙,拟合程序增加上土隙,使端阻力发挥迟后,影响端阻力充分发挥,减小土隙,使后,影响端阻力充分发挥,减小土隙,使2L/C2L/C前分段前分段单元计算力波形单元计算力波形F Fc(t)c(t)上升,上升,2L/C2L/C后局部后局部F Fc(t)c(t)波形下降。波形下降。土塞的影响:开口钢管桩或开预应力管桩,打桩过程土塞的影响:开口钢管桩或开预应力管桩,打桩过程有

41、部分土涌入管内,动力试桩时,这部分土体成为外有部分土涌入管内,动力试桩时,这部分土体成为外加质量,从而产生不可忽略的惯性力,加上土塞,使加质量,从而产生不可忽略的惯性力,加上土塞,使2L/C2L/C前数个单元计算力波形前数个单元计算力波形F Fc(t)c(t)上升,上升,2L/C 2L/C 往后单往后单元元F Fc(t)c(t)下降。下降。速度的影响:提高平均波速使速度的影响:提高平均波速使0 02L/C2L/C之间力波形之间力波形F Fc(t)c(t)前段上升,后段下降,同时使桩底反射提前。前段上升,后段下降,同时使桩底反射提前。图中实线是实测力波形图中实线是实测力波形Fm(t),Fm(t)

42、,虚线是实测速度虚线是实测速度波形。当已知计算波形波形。当已知计算波形Fc(t)Fc(t),可以把波形分四个时,可以把波形分四个时段讨论土阻力的影响段讨论土阻力的影响。时段时段I:I:从冲击开始至从冲击开始至2L/C2L/C时段,该段拟合好坏,主要时段,该段拟合好坏,主要是假定的各分段的侧阻力起主要作用。对长桩更是是假定的各分段的侧阻力起主要作用。对长桩更是如此;如此;时段时段:从:从2L/C2L/C开始至开始至t tr r+3ms+3ms时段(时段(t tr r为冲击开始至为冲击开始至力峰值时间),该段调整端阻力和总阻力,使波形力峰值时间),该段调整端阻力和总阻力,使波形吻合;吻合;时段时段

43、:从:从2L/C2L/C开始至开始至t tr r+5ms+5ms时段,该时段主要调整时段,该时段主要调整总阻力大小和阻尼系数使用波形吻合;总阻力大小和阻尼系数使用波形吻合;时段时段:第:第时段结束位置延时时段结束位置延时20ms20ms,该时段主要调,该时段主要调整卸载参数,卸载最大弹性位移整卸载参数,卸载最大弹性位移Q Qkmkm和卸载水平和卸载水平V Vn n,使波形吻合。使波形吻合。6 6、如何评价波形拟合的结果、如何评价波形拟合的结果 应满足三个条件:应满足三个条件:桩身各分段相应土层的侧阻力,桩身分布符合岩土桩身各分段相应土层的侧阻力,桩身分布符合岩土工程的合理范围计算波形和实测波形

44、,两者吻合达工程的合理范围计算波形和实测波形,两者吻合达到满意程度。即拟合质量系数到满意程度。即拟合质量系数MQMQ小于规定的值。小于规定的值。为一个定数。为一个定数。桩贯入度的计算值和实际值(测量值)吻合良好。桩贯入度的计算值和实际值(测量值)吻合良好。式中:式中:桩身完整性系数;桩身完整性系数;Z Z1 1被测截面桩身阻抗;被测截面桩身阻抗;Z Z2 2测点处桩身阻抗;测点处桩身阻抗;R Rx x缺陷以上部位土阻力的估计值,等于缺缺陷以上部位土阻力的估计值,等于缺 陷反射波起始点的力与速度乘以桩身截陷反射波起始点的力与速度乘以桩身截 面力学阻抗之差值,取值方法见下图。面力学阻抗之差值,取值方法见下图。计算装身缺陷位置计算装身缺陷位置x x:x=cx=c(t tx x-t-t1 1)/2000/2000 x x 桩身缺陷至传感器安装点的距离;桩身缺陷至传感器安装点的距离;t tx x缺陷反射峰对应的时刻(缺陷反射峰对应的时刻(msms););c c 桩身混凝土平均波速桩身混凝土平均波速(m/s)(m/s)。感谢大家!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(高应变动测法培训课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|