第二章 圆锥曲线与方程单元小结(原卷版).doc

上传人(卖家):cbx170117 文档编号:407368 上传时间:2020-03-29 格式:DOC 页数:6 大小:170KB
下载 相关 举报
第二章 圆锥曲线与方程单元小结(原卷版).doc_第1页
第1页 / 共6页
第二章 圆锥曲线与方程单元小结(原卷版).doc_第2页
第2页 / 共6页
第二章 圆锥曲线与方程单元小结(原卷版).doc_第3页
第3页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、1/1 第二章第二章 圆锥曲线与方程单元小结圆锥曲线与方程单元小结 (人教(人教 A 版)版) 核心速填 1椭圆、双曲线、抛物线的定义、标准方程、几何性质 椭圆 双曲线 抛物线 定义 平面内与两个定点F1, F2的距离之和等于常 数(大于_)的点 的轨迹 平面内与两个定点 F1,F2 的距离的差的绝对值等于 常数(小于_)的点的 轨迹 平面内与一个定点 F 和 一 条 定 直 线 l(l_ 点 F) 距 离 _的点的轨迹 标准方 程 x2 a2 y2 b21 或 y2 a2 x2 b2 1(ab0) x2 a2 y2 b2 1 或 y2 a2 x2 b2 1(a0,b0) _或 y2 2px或

2、_或x2 2py(p0) 关系式 _c2 _c2 图形 封闭图形 无限延展,但有渐近线 y b ax 或 y a bx 无限延展, 没有渐近线 变量范 围 |x|a,|y|b 或|y|a, |x|b |x|a 或|y|a x0 或 x0 或 y0 或 y0 对称性 对称中心为原点 无对称中心 两条对称轴 一条对称轴 顶点 四个 两个 一个 离心率 ec a,且 00,b0)的渐近线方程为 x2 a2 y2 b2 0(a0,b0),即 y_;双曲线y 2 a2 x2 b21(a0,b0)的渐近线方程为 y2 a2 x2 b20(a0,b0), 即 y_. (2)如果双曲线的渐近线为x a y b

3、0 时,它的双曲线方程可设为_ 3抛物线的焦点弦问题 抛物线过焦点 F 的弦长|AB|的一个重要结论 (1)y22px(p0)中,|AB|_. 2/2 (2)y22px(p0)中,|AB|x1x2p. (3)x22py(p0)中,|AB|_. (4)x22py(p0)中,|AB|y1y2p. 体系构建 题型探究 类型一、圆锥曲线的定义及应用类型一、圆锥曲线的定义及应用 例 1、 (1)已知动点 M 的坐标满足方程 5 x2y2|3x4y12|, 则动点 M 的轨迹是( ) A椭圆 B双曲线 C抛物线 D以上都不对 (2)在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F1,F2在

4、x 轴上,离心率为 2 2 .过 F1的直线 l 交 C 于 A,B 两点,且ABF2的周长为 16,那么 C 的方程为_. 规律方法 “回归定义”解题的三点应用 应用一:在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定 义,写出所求的轨迹方程; 应用二:涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三 角形的知识来解决; 应用三: 在求有关抛物线的最值问题时, 常利用定义把到焦点的距离转化为到准线的距 离,结合几何图形,利用几何意义去解决 提醒:应用定义解题时注意圆锥曲线定义中的限制条件 3/3 跟踪训练 1 点 P 是抛物线 y28x 上的任意一点,

5、 F 是抛物线的焦点, 点 M 的坐标是(2,3), 求|PM| |PF|的最小值,并求出此时点 P 的坐标 类型二、圆锥曲线的方程类型二、圆锥曲线的方程 例 2、 (1)已知中心在原点的椭圆 C 的右焦点为 F(1,0), 离心率等于1 2, 则 C 的方程是( ) Ax 2 3 y2 41 Bx 2 4 y2 31 Cx 2 4 y2 21 Dx 2 4 y2 31 (2)已知抛物线 y28x 的准线过双曲线x 2 a2 y2 b21(a0,b0)的一个焦点,且双曲线的离 心率为 2,则该双曲线的方程为_ 规律方法 求圆锥曲线方程的一般步骤 一般求已知曲线类型的曲线方程问题,可采用“先定形

6、,后定式,再定量”的步骤 (1)定形指的是二次曲线的焦点位置与对称轴的位置 (2)定式根据“形”设方程的形式, 注意曲线系方程的应用, 如当椭圆的焦点不确定在 哪个坐标轴上时,可设方程为 mx2ny21(m0,n0) (3)定量由题设中的条件找到“式”中待定系数的等量关系,通过解方程得到量的大 小 4/4 跟踪训练 2(1)以 x 轴为对称轴,通径长为 8,顶点为坐标原点的抛物线方程是( ) Ay28x By28x Cy28x 或 y28x Dx28y 或 x28y (2)焦点在 x 轴上,右焦点到短轴端点的距离为 2,到左顶点的距离为 3 的椭圆的标准方 程是( ) Ax 2 4 y2 31

7、 Bx 2 4y 21 Cy 2 4 x2 31 Dx2y 2 41 类型三、圆锥曲线的几何性质类型三、圆锥曲线的几何性质 例 3、(1)如图 2- 1 所示,F1,F2是椭圆 C1:x 2 4y 21 与双曲线 C 2的公共焦点,A,B 分别是 C1,C2在第二、四象限的公共点若四边形 AF1BF2为矩形,则 C2的离心率是( ) 图 2- 1 A 2 B 3 C3 2 D 6 2 (2)已知 ab0,椭圆 C1的方程为x 2 a2 y2 b21,双曲线 C2的方程为 x2 a2 y2 b21,C1 与 C2的 离心率之积为 3 2 ,则 C2的渐近线方程为_ 5/5 规律方法 求解离心率的

8、三种方法 (1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在 x 轴上还是 y 轴上都有关系式 a2b2c2(a2b2c2)以及 ec a, 已知其中的任意两个参数, 可以求其他的 参数,这是基本且常用的方法 (2)方程法:建立参数 a 与 c 之间的齐次关系式,从而求出其离心率,这是求离心率的 十分重要的思路及方法. (3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲 线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问 题更形象、直观. 跟踪训练 3已知椭圆x 2 a2 y2 b21(ab0)的半焦距是 c,A

9、,B 分别是长轴、短轴的一个端点,O 为原点,若ABO 的面积是 3c2,则这一椭圆的离心率是( ) A1 2 B 3 2 C 2 2 D 3 3 类型四、直线与圆锥曲线的位置关系类型四、直线与圆锥曲线的位置关系 例 4、已知椭圆x 2 a2 y2 b21(ab0)经过点(0, 3),离心率为 1 2,左、右焦点分别为 F1( c,0),F2(c,0) (1)求椭圆的方程; (2)若直线 l: y1 2xm 与椭圆交于 A, B 两点, 与以 F1F2为直径的圆交于 C, D 两点, 且满足|AB| |CD| 5 3 4 ,求直线 l 的方程 6/6 规律方法 直线与圆锥曲线的三种位置关系 将

10、直线方程与圆锥曲线方程联立, 化简后得到关于 x(或 y)的一元二次方程, 则直线与圆 锥曲线的位置关系有三种情况: (1)相交:0直线与椭圆相交;0直线与双曲线相交,但直线与双曲线相交不一 定有 0,如当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故 0 是直线与双曲线相交的充分不必要条件;0直线与抛物线相交,但直线与抛物线相交不 一定有 0,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故 0 也仅是直线与抛物线相交的充分条件,而不是必要条件. (2)相切:0直线与椭圆相切;0直线与双曲线相切;0直线与抛物线相 切. (3)相离:0直线与椭圆相离;0直线与双曲线相离;0直线与抛物线相离. 跟踪训练 4已知椭圆 E:x 2 a2 y2 b21(ab0),其焦点为 F1,F2,离心率为 2 2 ,直线 l:x2y 20 与 x 轴,y 轴分别交于点 A,B (1)若点 A 是椭圆 E 的一个顶点,求椭圆的方程; (2)若线段 AB 上存在点 P 满足|PF1|PF2|2a,求 a 的取值范围.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 英语 > 人教版(2024) > 九年级全一册
版权提示 | 免责声明

1,本文(第二章 圆锥曲线与方程单元小结(原卷版).doc)为本站会员(cbx170117)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|