1、平罗中学2022-2023学年度第一学期期中考试试卷高二数学(文)试卷满分:150分考试时长:120分钟一、单选题(每题5分,共60分,每小题只有一个选项是正确的)1若直线平面,直线,则()AB与异面C与相交D与没有公共点2已知直线,若,则的值为()A8B2CD-23已知圆,圆,则两圆的位置关系是()A相离B相交C内含D相切4如图所示,梯形是平面图形ABCD用斜二测画法得到的直观图,则平面图形ABCD的面积为()AB2CD35直线与圆相切,则的值是()(第4题图)ABC2D6已知某几何体的三视图如下图所示,根据图中标出的尺寸(单位:),可得这个几何体的体积是()ABC1D27以点(3,1)为圆
2、心,且与直线x3y40相切的圆的方程是()A(x3)2(y1)210B(x3)2(y1)210C(x3)2(y1)210D(x3)2(y1)2108如图是一个算法的流程图,则最后输出的值为()ABCD9圆(x1)2(y1)21上的点到直线xy2的距离的最大值是()A2B1C2D110已知,是两条不同的直线,是两个不同的平面,则下列结论一定正确的是()A若,则B若,则C若,则D若,则11如图,正方体的棱长为,下面结论错误的是()A平面B平面C异面直线与所成角为D三棱锥体积为12直线与曲线有且有一个公共点,的取值范围为()AB或CD二、填空题(每题5分,共20分)13如图,在正方体中,异面直线与所
3、成的角为_.14若变量满足约束条件,则的最大值为_.15一平面截一球得到面积为的圆面,球心到这个圆面的距离是球半径的一半,则该球的表面积等于_16如图,在正方体中,分别是棱,的中点,则下列结论中:;面;面面;面正确结论的序号是_.三、解答题(其中17题10分,其余各题12分,共70分)17(本题10分)直线l经过两条直线和的交点,且与直线平行.(1)求直线l的方程;(2)求直线l与坐标轴围成的三角形面积.18(本题12分)已知圆,直线.(1)当为何值时,直线与圆相切;(2)当直线与圆相交于、两点,且时,求直线的方程.19(本题12分)如图,在四棱柱中,底面为正方形,侧棱底面,为棱的中点,.(1)求证:平面;(2)求证:.20(本题12分)已知线段AB的端点B的坐标是,端点A在圆上运动(1)求线段AB的中点P的轨迹的方程;(2)设圆与曲线的两交点为M,N,求线段MN的长;21(本题12分)如图,四棱锥中,底面ABCD为菱形,PA平面ABCD,E为PD的中点.(1)求证:平面PAC平面PBD;(2)当PA=AB=2,ABC=时,求三棱锥的体积22(本题12分)已知圆M过C(1,1),D(1,1)两点,且圆心M在x+y2=0上.(1)求圆M的方程;(2)设P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.4