余弦定理(二)公开课课件.ppt

上传人(卖家):晟晟文业 文档编号:4129091 上传时间:2022-11-13 格式:PPT 页数:36 大小:1.03MB
下载 相关 举报
余弦定理(二)公开课课件.ppt_第1页
第1页 / 共36页
余弦定理(二)公开课课件.ppt_第2页
第2页 / 共36页
余弦定理(二)公开课课件.ppt_第3页
第3页 / 共36页
余弦定理(二)公开课课件.ppt_第4页
第4页 / 共36页
余弦定理(二)公开课课件.ppt_第5页
第5页 / 共36页
点击查看更多>>
资源描述

1、主讲老师:陈震主讲老师:陈震1.1.2余弦定理余弦定理(二二)复习引入复习引入已知三角形的任意两边及它们的夹角已知三角形的任意两边及它们的夹角就可以求出第三边就可以求出第三边.余弦定理及基本作用余弦定理及基本作用 复习引入复习引入Abccbacos2222 Baccabcos2222 Cabbaccos2222 余弦定理及基本作用余弦定理及基本作用 已知三角形的任意两边及它们的夹角已知三角形的任意两边及它们的夹角就可以求出第三边就可以求出第三边.复习引入复习引入余弦定理及基本作用余弦定理及基本作用 已知三角形的三条边就可以求出其它角已知三角形的三条边就可以求出其它角.复习引入复习引入bcacb

2、A2cos222 acbcaB2cos222 abcbaC2cos222 已知三角形的三条边就可以求出其它角已知三角形的三条边就可以求出其它角.余弦定理及基本作用余弦定理及基本作用 练习:练习:1.教材教材P.8练习练习第第2题题.2.在在ABC中,若中,若a2b2 c2 bc,求角求角A.思考思考:解三角形问题可以分为几种类型?解三角形问题可以分为几种类型?分别怎样求解的?分别怎样求解的?思考思考:解三角形问题可以分为几种类型?解三角形问题可以分为几种类型?分别怎样求解的?分别怎样求解的?(1)已知三角形的任意两边与其中一边的已知三角形的任意两边与其中一边的对角,对角,例如例如a12,b5,

3、A120o;思考思考:(2)已知三角形的任意两角及其一边,已知三角形的任意两角及其一边,例如例如A70o,B50o,a10;(1)已知三角形的任意两边与其中一边的已知三角形的任意两边与其中一边的对角,对角,例如例如a12,b5,A120o;解三角形问题可以分为几种类型?解三角形问题可以分为几种类型?分别怎样求解的?分别怎样求解的?思考思考:(3)已知三角形的任意两边及它们的夹已知三角形的任意两边及它们的夹角,角,例如例如a12,b13,C50o;解三角形问题可以分为几种类型?解三角形问题可以分为几种类型?分别怎样求解的?分别怎样求解的?思考思考:(3)已知三角形的任意两边及它们的夹已知三角形的

4、任意两边及它们的夹角,角,例如例如a12,b13,C50o;(4)已知三角形的三条边,已知三角形的三条边,例如例如a10,b12,c9.解三角形问题可以分为几种类型?解三角形问题可以分为几种类型?分别怎样求解的?分别怎样求解的?思考思考:解三角形问题可以分为几种类型?解三角形问题可以分为几种类型?分别怎样求解的?分别怎样求解的?求解三角形一定要求解三角形一定要知道一边吗?知道一边吗?(3)已知三角形的任意两边及它们的夹已知三角形的任意两边及它们的夹角,角,例如例如a12,b13,C50o;(4)已知三角形的三条边,已知三角形的三条边,例如例如a10,b12,c9.讲解范例:讲解范例:例例1.在

5、在ABC中,已知下列条件解三角形中,已知下列条件解三角形.(1)A30o,a10,b20;(2)A30o,a10,b6;(3)A30o,a10,b15;(4)A120o,a10,b5;(5)A120o,a10,b15.讲解范例:讲解范例:例例1.在在ABC中,已知下列条件解三角形中,已知下列条件解三角形.(1)A30o,a10,b20;(2)A30o,a10,b6;(3)A30o,a10,b15;(4)A120o,a10,b5;(5)A120o,a10,b15.一解一解 讲解范例:讲解范例:例例1.在在ABC中,已知下列条件解三角形中,已知下列条件解三角形.(1)A30o,a10,b20;(2

6、)A30o,a10,b6;(3)A30o,a10,b15;(4)A120o,a10,b5;(5)A120o,a10,b15.一解一解 一解一解 讲解范例:讲解范例:例例1.在在ABC中,已知下列条件解三角形中,已知下列条件解三角形.(1)A30o,a10,b20;(2)A30o,a10,b6;(3)A30o,a10,b15;(4)A120o,a10,b5;(5)A120o,a10,b15.一解一解 一解一解 二解二解 讲解范例:讲解范例:例例1.在在ABC中,已知下列条件解三角形中,已知下列条件解三角形.(1)A30o,a10,b20;(2)A30o,a10,b6;(3)A30o,a10,b1

7、5;(4)A120o,a10,b5;(5)A120o,a10,b15.一解一解 一解一解 二解二解 一解一解 讲解范例:讲解范例:例例1.在在ABC中,已知下列条件解三角形中,已知下列条件解三角形.(1)A30o,a10,b20;(2)A30o,a10,b6;(3)A30o,a10,b15;(4)A120o,a10,b5;(5)A120o,a10,b15.一解一解 一解一解 二解二解 一解一解 无解无解 归纳:归纳:1.如果已知的如果已知的A是直角或钝角,是直角或钝角,ab,只有一解;只有一解;归纳:归纳:1.如果已知的如果已知的A是直角或钝角,是直角或钝角,ab,只有一解;只有一解;2.如果

8、已知的如果已知的A是锐角,是锐角,ab,或,或a=b,只有一解;只有一解;归纳:归纳:1.如果已知的如果已知的A是直角或钝角,是直角或钝角,ab,只有一解;只有一解;2.如果已知的如果已知的A是锐角,是锐角,ab,或,或a=b,只有一解;只有一解;3.如果已知的如果已知的A是锐角,是锐角,ab,(1)absinA,有二解有二解;(2)absinA,只有一解只有一解;(3)absinA,无解无解.练习:练习:(1)在在ABC中中,a80,b100,A45o,试判断此三角形的解的情况试判断此三角形的解的情况.,21(2)在在ABC中中,若若a1,c C40o,则符合题意的则符合题意的b的值有的值有

9、_个个.(3)在在ABC中中,axcm,b2cm,B45o,如果利用正弦定理解三角形有两解如果利用正弦定理解三角形有两解,求求x的的取值范围取值范围.讲解范例:讲解范例:例例2.在在ABC中,已知中,已知a7,b5,c3,判断判断ABC的类型的类型.练习:练习:(1)在在ABC中中,已知已知sinA:sinB:sinC1:2:3,判断此判断此ABC的类型的类型.(2)已知已知ABC满足条件满足条件acosAbcosB,判判断断ABC的类型的类型.讲解范例:讲解范例:例例3.在在ABC中,中,A60o,b1,面积,面积为为.sinsinsin,23的值的值求求CBAcba 练习:练习:(1)在在

10、ABC中,若中,若a55,b16,且此三,且此三角形的面积为角形的面积为S ,求角求角C.3220(2)在在ABC中,其三边分别为中,其三边分别为a、b、c,且三角形的面积形且三角形的面积形S 求角求角C.,4222cba 课堂小结课堂小结1.在已知三角形的两边及其中一边的对在已知三角形的两边及其中一边的对 角解三角形时,有两解或一解或无解角解三角形时,有两解或一解或无解 等情形;等情形;2.三角形各种类型的判定方法;三角形各种类型的判定方法;3.三角形面积定理的应用三角形面积定理的应用.湖南省长沙市一中卫星远程学校课后作业:课后作业:1.在在ABC中中,已知已知b4,c10,B30o,试判断

11、此三角形的解的情况试判断此三角形的解的情况.2.设设x、x1、x2是钝角三角形的三边是钝角三角形的三边长,求实数长,求实数x的取值范围的取值范围.3.在在ABC中中,A60o,a1,bc2,判判断断ABC的形状的形状.4.三角形的两边分别为三角形的两边分别为3cm,5cm,它们所它们所夹的角的余弦为方程夹的角的余弦为方程5x27x60的根,的根,求这个三角形的面积求这个三角形的面积.湖南省长沙市一中卫星远程学校湖南省长沙市一中卫星远程学校湖南省长沙市一中卫星远程学校湖南省长沙市一中卫星远程学校湖南省长沙市一中卫星远程学校湖南省长沙市一中卫星远程学校湖南省长沙市一中卫星远程学校湖南省长沙市一中卫星远程学校

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(余弦定理(二)公开课课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|