1、复习复习1 162 153 144 135 126 117 108 9IN/OUTOUT/ININ/OUTINHVEEVSSVDDIN/OUTABC图2-37 CD4051引脚图复习DAC0832复习复习注:R f=15千欧复习ADC0808/0809复习复习复习 A/D D/A控制规律 计算程序执行机构被控对象检测装置设定值+-图图1-1 1-1 计算机控制系统基本框图计算机控制系统基本框图复习第三章 数字控制器的模拟化设计 3.1 引言引言 3.2 离散化方法离散化方法 3.3 PID数字控制器的设计数字控制器的设计 3.4 数字数字PID控制算法的改进控制算法的改进 3.5 PID数字控
2、制器的参数整定和数字控制器的参数整定和 设计举例设计举例第一节 引言 在数字控制系统中,用数字控制器替代模拟调节器。计算机执行按某种算法编写的程序,实现对被控对象的控制和调节,称为数字控制器数字控制器。设计方法一:设计方法一:把计算机控制系统近似看成模拟系统,用连续系统的理论来进行动态分析和设计,再将设计结果转变成数字计算机的控制算法,该方法称为模拟化设计方法,又称间接设计法模拟化设计方法,又称间接设计法。D(s)Gc(s)R(s)+-C(s)图3-2 作为连续控制系统的结构图设计方法二:设计方法二:把计算机控制系统经过适当变换,变成纯粹的离散系统,用Z变换等工具进行分析设计,直接设计出控制算
3、法,该方法为离散化设计方离散化设计方法,又叫直接设计法法,又叫直接设计法。模拟化设计方法模拟化设计方法基本思路:基本思路:当系统的采样频率足够高时,采样系统的特性接近于连续变化的模拟系统,因而可以忽略采样开关和保持器,将整个系统看成是连续变化的模拟系统。设计实质设计实质是:将一个模拟调节器离散化,用数字控制器取代模拟调节器。设计基本步骤设计基本步骤:用连续系统设计方法确定D(S)采用适当的离散化方法求出相应的D(Z)检查系统性能是否满足要求将D(z)化为差分控制算法,编制计算机程序必要时进行数模混合仿真,检验系统设计与程序编制是否正确 第二节 离散化方法 一差分变换法一差分变换法 模拟调节器若
4、用微分方程的形式来表示,其导数可用差分近似。常用的差分方法:后向差分和前向差分。(1)一阶后向差分:一阶导数采用近似式:(3 1)(2)二阶后向差分:二阶导数采用近似式:(32)Tkukudttdu)1()()(22)2()1(2)()1()()(TkukukuTkukudttud特点特点:变换公式简单,应用方便;D(Z)与D(S)的等效精度差。应用场合:应用场合:很少使用,一般只用于微分环节的离散化中,如PID控制器的离散化。例例1:求惯性环节求惯性环节 的差分的差分方程。方程。解:解:由 有 化成微分方程:以采样周期T离散上述微分方程得:即 11)(1sTsD11)()()(1sTsEsU
5、sD)()()1(1sEsUsT)()()(1tetudttduT)()()(1kTekTukTuT)()()(1kekukuT 用一阶后向差分近似代替微分得 代入上式得 整理得 Tkukutu)1()()()()()1()(1kekukukuTT)()1()(111keTTTkuTTTku 例例2:求环节求环节 的差分方的差分方程。程。解:解:由 有 即 化成微分方程 代入式(31)和(32)得 最后得到)1()(1sTsKsD)()()(sEsUsD)()()1(1sKEsUsTs)()()(21sKEssUsUsT)()()(1tketutuT )()1()(2-1-2(21kKeTku
6、kuTkukukuT)()())()2()1(2)(121111keTTkTkuTTTkuTTTTku 二零阶保持器法(二零阶保持器法(阶跃响应不变法)阶跃响应不变法)基本思想:基本思想:离散近似后的数字控制器的离散近似后的数字控制器的阶跃响应序列,必须与模拟调节器的阶跃响阶跃响应序列,必须与模拟调节器的阶跃响应的采样值相等。应的采样值相等。(37)其中 H(s)称为零阶保持器,T为采样周期。零阶保持器法的物理解释如教材P89图34所示。ssDZzzD1)(11)(1ssDZzzD)()1()(1)()()(1)(sDsHZsDseZzDTs 阶跃响应不变法特点:阶跃响应不变法特点:D(Z)能
7、保持D(S)的阶跃响应采样值,但不能保证脉冲响应采样值不变。若D(S)稳定,D(Z)也一定稳定 未改变Z变换所产生的频率混叠现象。使用场合:使用场合:通常只适用于低通网络的离散变换,另外,当采样频率较低时,应注意补偿零阶保持器带来的相移 例例3:用零阶保持器法求惯性环节用零阶保持器法求惯性环节 的差分方程。的差分方程。解:解:由式(37),有 11)(1sTsD111)(1sTseZzDTs)1(1)1(11sTsZz11111)1(TssZz 所以 整理得1/1111111)1(zezzTT)1)(1()1()1(1/11/111zezzezTTTT1/1/111)1(zezeTTTT)()
8、()(ZEZUZD1/1/111)1(zezeTTTT)1()1()1()(11/keekuekuTTTT 三双线性变换法三双线性变换法 又称突斯丁(突斯丁(Tustin)法)法,它是将s域函数与Z域函数进行转换的一种近似方法。由Z变换定义,有 (38)将 和 展开成泰勒级数:(39)(310)sTsTTseeez222/Tse2/Tse2/Tse22821sTsT2/Tse22821sTsT 对式(3-9)、(3-10),若只取其前两项作为近似式代入(38)有 (312)当已知连续传函D(s)时,可计算D(z)特点:特点:D(S)稳定,D(Z)也稳定;低频特性保存很好,高频特性失真,但无频率
9、混叠现象;稳态增益不变,具有串联特性;计算机计算简单。适用场合:适用场合:应用最广泛,即适用于离散有限带宽环节,也适用于离散高频段幅值较平坦的环节。TsTssTsTsTsTz2222212111112112zzTzzTs112)()(zzTssDzD 例4:已知某连续控制器的传函 ,试用双线性变换法求出相应的数字控制器的脉冲传函D(z),其中T=1s。解:由式(312),有 T=1,得 2)1(5.0)(sssD2111111125.0112)(zzTzzTzD2112111)1()1(2)1(5.0)1)(1(2zzzzz2121695.15.2zzzz2121111.0667.01)6.0
10、4.01(278.0zzzz各离散化方法比较各离散化方法比较:1.双线性变换法精度最高,其次是零点匹配法,差分变换和阶跃响应不变法较差,冲击响应不变法最差。2.当采样周期小到一定程度时,区别不大。一般讲,要在离散域中设计一个D(Z)与确定的D(S)完全等价是不可能的,我们只能选一个D(Z)去“逼近”D(S),逼近的程度取决于系统工作的频段和采样频率的大小。各离散方法适用于不同的场合,不能一般的确定各种方法性能优劣的顺序表。实际表明,在各种离散化方法中,双线性变换法适应性强,使用效果好,工程应用中可以首先考虑。第三节 PID数字控制器的设计 PID调节器优点:调节器优点:1.不需要建立模型2.结
11、构简单,参数易于调整3.技术成熟,易被人们熟习和掌握4.控制效果好模拟调节系统中,PID控制算法的模拟表达式模拟表达式为 (313)tDIPdttdeTdtteTteKtu0)()(1)()(用离散的差分方程代替连续系统的微分方程。连续的时间离散化,即 t=KT (K=0,1,2,n)积分用累加求和近似得 (314)微分用一阶后向差分近似得 (315)tKjKjjeTTjedtte000)()()(Tkekedttde)1()()(将式(314)和(315)代入式(313),可得到离散的PID表达式 (316)式(316)表示的控制算法提供了执行机构的位置u(k),即其输出值与阀门开度的位置一
12、一对应,所以,把式(316)称为PID的位置式控制算式或位置式位置式控制算式或位置式PID控制算法控制算法。其控制原理图如图36所示。kjDIPkekeTTjeTTkeKku0)1()()()()(令则 (317)此即为离散化位置式离散化位置式PID控制算法的编程表示。控制算法的编程表示。考虑到第k-1次采样时有 (318)使式(317)两边对应减去式(318),并整理得 (3 19)其中,式(319)就是PID位置式算式的递推形式位置式算式的递推形式,是编程时常用的形式之一。IPITTKKTTKKDPDkjDIPkekeKjeKkeKku0)1()()()()(10)2()1()()1()1
13、(kjDIPkekeKjeKkeKku)2()1()()1()(210keakeakeakukuTTTTKaDIP10TTKaDP211TTKaDP2位置式数字控制器的程序如下:DATASEGMENT;数据段开始CONS0 DB13;存放系数a0CONS1 DB2;存放系数a1CONS2 DB0;存放系数a2GEC1DB?;存放给定值GEC2DB?;存放输出反馈值SUB1DB?;存放偏差值e(k)SUB2DB0;存放偏差值e(k-1)SUB3DB0;存放偏差值e(k-2)MID1DW?;存放乘积a0 e(k)MID2DW?;存放乘积a1 e(k-1)OUTP1 DW0;存放U(k-1)DATA
14、ENDS;数据段结束CODESEGMENT;代码段开始ASSUMECS:CODE,DS:DATAMAIN:MOV AX,DATAMOVDS,AX;装填数据段BACK:CALLRECEIVE;接收数据到GEC2,获取GEC1MOVAL,GEC2SUBAL,GEC1;计算e(k)MOVSUB1,ALMOVDL,CONS0;取a0IMULDL;a0 e(k)放入AXMOVMID1,AX;a0 e(k)存入暂存单元MOVAL,SUB2;取e(k-1)MOVDL,CONS1;取a1IMULDL;a1 e(k-1)放入AXMOVMID2,AX;a1 e(k-1)存入暂存单元MOVAL,SUB3;取e(k-
15、2)MOVDL,CONS2;取a2IMULDL;a2 e(k-2)放入AXADDAX,MID1;a0 e(k)+a2 e(k-2)放入AXSUBAX,MID2;a0 e(k)-a1 e(k-1)+a2 e(k-2)放入AXADDAX,OUTP1;u(k-1)+a0 e(k)-a1 e(k-1)+a2 e(k-2)放入AXOUTPORT,AL;输出u(k)MOVOUTP1,AXMOVAL,SUB2MOVSUB3,AL;由e(k-1)得到e(k-2)MOVAL,SUB1MOVSUB2,AL;由e(k)得到e(k-1)JMPBACKMOVAH,4CHINT21H;返回DOSRECEIVEPROC;接
16、收反馈值子程序.RECEIVEENDPCODEENDS;代码段结束ENDMAIN;源程序结束 若令 u(k)=u(k)-u(k-1)则 u(k)=a0e(k)-a1e(k-1)+a2e(k-2)(320)式中 a0、a1、a2同式(319)中一样。由于其控制输出对应于执行机构的位置的增量,故式(320)被称为PID控制的增量式算式控制的增量式算式。增量式增量式PID控制算法控制算法与位置式PID算法相比较的优点优点:1不需累加,控制效果好 2可靠性高,计算机造成的误动作小 3手动自动切换时冲击比较小。还有一种称为速度式的控制算法速度式的控制算法,它采用位置式的导数形式,也就是即 PID数字控制
17、各种算式形式的选择视执行器的形式、被控对象的特性而定。若执行机构不带积分部件,其位置和计算机输出的数字量是一一对应的话,就采用位置式算式。若执行机构带积分部件,就选用增量式算式。TkudttdutV)()()()2()1(21)(1)()(keTTkeTTkeTTTTTKTkukVDDDIP)()()(1)(sDsHZsDseZzDTs 112)()(zzTssDzDTkukudttdu)1()()(22)2()1(2)()1()()(TkukukuTkukudttud复习kjDIPkekeTTjeTTkeKku0)1()()()()(位置式控制算式或位置式位置式控制算式或位置式PID控制算法
18、控制算法)2()1()21()()1()1()(keTTKkeTTKkeTTTTkkukuDPDPDIpPID位置式算式的递推形式位置式算式的递推形式PID控制的增量式算式控制的增量式算式u(k)=u(k)-u(k-1)=a0e(k)-a1e(k-1)+a2e(k-2)tDIPdttdeTdtteTteKtu0)()(1)()(PID控制算法的模拟表达式:复习第四节 数字PID控制算法的改进 一防止积分整量化误差的方法 在PID增量式算法中,积分项为e(k)KPT/TI,即当采样周期T较小,而积分时间TI较大时,KIe(k)项很可能小于计算机输出的最低有效位,在运算时被取整而舍掉,从而产生积分
19、整量化误差。防止积分整量化误差的方法主要有两种。1扩大计算机运算的字长,提高计算精度。这种方法的实质是使处理机最低有效位对应的数值量相应减小,提高了计算的分辨率,使得整量化中可能丢掉的部分得以保留。2当积分项KIe(k)时,积分项单独累加,直到产生溢出。将溢出值作为积分项的偏差值进行运算,余数仍保留下来,作为下一步累加的基数值。U(k)=m(k)+e(k)二积分饱和及其防止方法二积分饱和及其防止方法 (一)积分饱和的原因和影响(一)积分饱和的原因和影响 实际系统中,控制变量及其变化率因受执行元件的物理和机械性能的约束限制在一个有限范围内,当计算机输出的控制量或其变化率在该范围内时,控制正常进行
20、。但若超出该范围,实际执行的控制量或其变化率就不是计算值,而是系统执行机构的饱和临界值,引起了不希望的效应。在数字PID控制系统中,当系统开、停或大幅度变动时,系统会出现较大的偏差,经过积分项累积后,可能使控制量u(k)umax或u(k)umin,即超过执行机构由机械或物理性能所决定的极限。此时,控制量并不能真正取得计算值,而只能取umax或umin,从而影响控制效果。由于主要是积分项的存在,引起了PID运算的“饱和”,因此,这种饱和称为积分饱和。它会增加了系统的调整时间和超调量,称“饱和效应饱和效应”。(二)积分饱和的防止方法(二)积分饱和的防止方法1积分分离法积分分离法 将式(317)改写
21、为下面的形式 (3 22)式中,为e(k)的门限值。式(322)称为积分分离积分分离PID算式算式。其基本思想基本思想是:当偏差大于某个规定的门限值时,删除积分作用,以使 不至过大。只有当e(k)较小时,方引入积分作用,以消除静差。这样,控制量不易进入饱和区了;即使进入了,也能较快退出,所以系统的输出特性得到了改善。kjDILPkekeKjeKKkeKku0)1()()()()()(,0)(1kekeKL,kjje0)(2遇限削弱积分法遇限削弱积分法 该方法的基本思想基本思想是:当控制量进入饱和区后,只执行削弱积分项的累加,而不进行增大积分项的累加。即计算u(k)时,先判断u(k-1)是否超过
22、限制范围,若已超过umax,则只累计负偏差;若小于umin,就只累计正偏差。该方法也可避免控制量长时间停留在饱和区。其算法的程序框图如图312所示。第五节 PID数字控制器的参数整定和设计举例 一PID控制器参数对系统性能的影响(一)比例系数KP对系统性能的影响 1对动态特性的影响 KP太小,调节缓慢;KP增大,速度加快,KP过大时,会引起系统的超调过大,振荡次数增多,系统不稳定。2对稳态特性的影响 增大KP,在稳定情况下,可减小稳态误差ess,提高控制精度,但不能消除稳态误差。(二)积分时间常数TI对系统性能的影响 1对动态特性的影响 TI增大,减弱积分环节的作用,对系统性能的影响减少;TI
23、减小会加强积分的作用,TI太小时,会引起系统振荡。TI合适时,过渡过程较理想。2对稳态误差的影响 积分控制能消除稳态误差,提高控制精度。但TI太大时积分作用太弱,不能减小稳态误差。(三)(三)微分时间常数微分时间常数TD对系统特性的影对系统特性的影响响 微分控制能对系统的瞬间的波动进行补偿控制,主要改善系统的动态特性,减小超调,调节时间缩短,允许加大比例控制,减小稳态误差,提高控制精度。增大TD,可增加微分作用。但TD太大或太小,都会引起系统超调增大,调节时间变长;TD合适时,可有满意的过渡过程。max二二采样周期采样周期T的选择的选择原则原则采样周期的选取应通过实验来确定:响应快、波动大、易
24、受干扰影响的过程,应取较小的采样周期。如果过程的纯滞后时间比较明显时,T可与纯滞后时间大致相等。1必须满足采样定理的要求:s2max,max是被采样信号的最高角频率,采样周期的上限值T ,根据经验公式s10c,c为开环截止频率。2从控制性能角度来看,T小些好。对随动系统(如天线跟踪飞行器的随动系统)和抗干扰的性能来看,T应小些,以实现快速跟随和快速抑制干扰,T太大会丢失许多信息。3根据被控对象的特性,快速系统(如高速线材轧制系统)的T应取小,反之,T可取大些。4根据执行机构的类型,执行机构动作惯性大时,T应取大些。否则,执行机构来不及反应控制器输出值的变化。被测参数采样周期T(s)备注流量压力
25、液位温度成分1531061015201520优先选用1s优先选用5s或纯滞后的时间表3-3 采样周期T的经验数据 5从计算机的工作量及每个调节回路的计算成本来看,T选大些,T大可增加控制的回路数。6从计算机能精确执行控制算式来看,T选大些。T过小,偏差值e(k)可能很小,甚至为0,调节作用减弱,微分、积分作用不明显。在编程过程中要考虑的问题:1.执行机构的极限保护:防止执行机构过开或过关;可检查输出余量2.防止极限环:对于很小的输出,使执行机构频繁动作,易引起振荡;可对计算机输出设一个不灵敏区。三用扩充临界比例度法(稳定边界法)选择三用扩充临界比例度法(稳定边界法)选择PID参数参数1选择一个
26、合适的采样周期T控制器作纯比例KP控制;2调整KP的值,使系统出现临界振荡(等幅振荡),记下相应的临界振荡周期Ts和临界振荡增益Ks;3选择合适的控制度,它是数字控制器和模拟调节器所对应的过渡过程的误差平方的积分比,即 控制度控制度=ADdtedte0202通常,控制度为1.05时,数字控制器和模拟控制器的效果相当。当控制度为2.0时,数字控制器比模拟调节器的控制质量差一倍。4 根据控制度查表34(见书P105),即可求出T、KP、TI和TD。(适用于被控对象是一阶滞后惯性环节)(适用于被控对象是一阶滞后惯性环节)控制度控制规律T/TsKp/KSTI/TSTD/TS1.05PIPID0.030
27、.0140.540.630.880.490.141.2PIPID0.050.0450.490.470.910.470.161.5PIPID0.140.090.420.340.990.430.202.0PIPID0.220.160.360.271.050.40.22表3-4 扩充临界比例度法整定参数表 扩充临界比例度法简单方便,容易掌握和判断,但是实验时系统要闭环进行,要产生短时间的系统振荡,若系统不允许反复振荡(如锅炉给水系统和燃烧控制系统),则禁用,防止产生重大事故。四用扩充响应曲线法选择四用扩充响应曲线法选择PID参数参数 若已知系统的动态特性曲线,数字控制器的参数整定也可用类似模拟调节器
28、的响应曲线法来进行,称为扩充响应曲线法。步骤步骤如下:1断开数字控制器,系统在手动状态下工作。当系统在给定值处于平衡后,给一阶跃输入(如图325a所示)。2用仪表记录被调参数在阶跃作用下的变化过程曲线,如图b所示。3在曲线最大斜率处做切线,求得滞后时间,对象时间常数Tm,以及它们的比值Tm/。4根据求得的Tm、和Tm/的值,查表35即可求得控制器的T、KP、TI和TD。表中控制度的求法与扩充临界比例度法相同。控制度控制规律T/Kp/(Tm/)TI/TD/1.05PIPID0.10.050.841.153.42.00.451.2PIPID0.20.160.731.03.61.90.551.5PI
29、PID0.50.340.680.853.91.620.652.0PIPID0.80.60.570.64.21.50.82表3-5 扩充响应曲线法整定参数表 五五PID归一参数整定法归一参数整定法 设PID增量算式为 )2()1(2)()()1()(kekekeTTkeTTkekeKDIP)423()2()1()(210keakeakeaKPTTaTTaTTTTaDDDI,21,1210其中)433(1)()()()(122110zzazaaKzEzUzDP)1()()(kukuku对式(342)作Z变换,可得PID数字控制器的Z传函为:1211)25.15.345.2()(zzzKzDP)2(
30、25.1)1(5.3)(45.2)(kekekeKkuP)443(125.05.01.0sDsIsTTTTTT为简化参数的整定,提出人为的约束条件,取:将式(344)代入式(342)和(343),得差分方程为试凑法试凑法在试凑时,根据各参数对控制过程的影响,对参数进行先比例,后积分,再微分的整定步骤。步骤如下:(1)整定比例部分。(2)如果仅调节比例调节器参数,系统的静差还达不到设计要求时,则需加入积分环节。(3)若使用比例积分器,能消除静差,但动态过程经反复调整后仍达不到要求,这时可加入微分环节。表表3-6 常见被调量常见被调量PID参数经验选择范围参数经验选择范围 六按二阶工程设计法设计数
31、字控制器六按二阶工程设计法设计数字控制器 二阶系统是工业生产过程中最常见的一种系统,实际的高阶系统可简化为二阶系统来进行设计,二阶系统闭环传函形式为 (347)当s=j,代入上式得:求出闭环传递函数的幅频特性为 (348)22111)(sTsTs122221)1(1)()(11)(TjTjTjTj21222)()1(1)()(TTjA)503(221TT即222211)(sTsTs)493(0)(1)(jj相位移、模 要使二阶系统的输出获得理想的动态品质,即该系统的输出量完全跟随给定量,应满足:把式(348)代入式(349),得0)2(1)()1(22214221222TTTTT在低频范围内,
32、T2240,可有T12-2T2=0 得到理想情况下二阶系统闭环传函形式为:设G(s)为该系统的开环传函,根据 推导出 把式(351)代入得 此即二阶品质最佳的系统开环传函基本公式。二阶工程设计法简单的整定原则:即只要将系统的开环传递函数整定为:“积分与惯性相串联的形式,并且是二者的系数相差二倍即可”。)(1)()(sGsGs)(1)()(sssGSTSTsG22221121)(离散化设计方法:第四章离散化设计方法:第四章 模拟化设计方法模拟化设计方法设计基本步骤设计基本步骤:用连续系统设计方法确定D(S)采用适当的离散化方法求出相应的D(Z)检查系统性能是否满足要求 将D(z)化为差分控制算法
33、,编制计算机程序 必要时进行数模混合仿真,检验系统设计与程序编制是否正确复习)()()(1)(sDsHZsDseZzDTs 112)()(zzTssDzDTkukudttdu)1()()(22)2()1(2)()1()()(TkukukuTkukudttud复习一阶后向差分变换法:二阶后向差分变换法:零阶保持器法(阶跃响应不变法):双线性变换法(突斯汀变换法):kjDIPkekeTTjeTTkeKku0)1()()()()(位置式控制算式或位置式位置式控制算式或位置式PID控制算法控制算法)2()1()21()()1()1()(keTTKkeTTKkeTTTTkkukuDPDPDIpPID位置
34、式算式的递推形式位置式算式的递推形式PID控制的增量式算式控制的增量式算式u(k)=u(k)-u(k-1)=a0e(k)-a1e(k-1)+a2e(k-2)tDIPdttdeTdtteTteKtu0)()(1)()(PID控制算法的模拟表达式:复习数字数字PID控制算法的改进控制算法的改进防止积分整量化误差的方法U(k)=m(k)+kpTe(k)/TIPID数字控制器的参数整定方法:数字控制器的参数整定方法:扩充临界比例度法(稳定边界法)、扩充响应扩充临界比例度法(稳定边界法)、扩充响应曲线法、曲线法、试凑法试凑法(1)整定比例部分。(2)如果仅调节比例调节器参数,系统的静差还达不到设计要求时
35、,则需加入积分环节。(3)若使用比例积分器,能消除静差,但动态过程经反复调整后仍达不到要求,这时可加入微分环节。复习 按二阶工程设计法设计数字控制器按二阶工程设计法设计数字控制器 二阶品质最佳的系统开环传函基本公式:二阶工程设计法简单的整定原则:即只要将系统的开环传递函数整定为:“积分与惯性相串联的形式,并且是二者的系数相差二倍即可”。STSTsG22221121)(复习七七PID数字控制器设计数字控制器设计举例举例 用模拟调节规律离散化的方法设计一个轧机位置控制系统的数字控制器。(一)轧机系统的数学模型及数字控制器算式(一)轧机系统的数学模型及数字控制器算式 该系统的主回路主要由电液伺服阀、
36、液压缸及作位移检测的差动变压器等组成。简化框图如图326所示。A/D转换器数字PIDD/A转换器功率放大器电液伺服阀液压缸差动变压器电压放大器A/D转换器给定值微型计算机图3-26 轧机液压厚度调节框图不考虑外来干扰,轧机位置反馈系统原理框图如图327所示。不考虑D(s)(校正环节传函),轧机系统的开环传函原为6阶,从中找出影响系统动态性能的主要环节和参数,对其进行简化,得到系统开环传函:(353)令将其代入式(353),得 (354)且 Ts1Ts2 22/hqSVPCAKKrRKrsT11hasTT12)1)(1()(21STSTKsGss11112/)(2sTsAKKrRsGharhqS
37、VPC 从快速性和稳定性角度来看,用微机实现对轧机系统的动态校正,就要求包含有微机的轧机系统具有二阶最佳设计的基本形式,整个系统的开环传函为 (355)为把式(355)化成(352),应选择D(s)为PI调节器,即 (356)为使调节器能抵消轧机系统中较大的时间常数Ts1,可选择:=Ts1 (357)式(355)化成 (358))1)(1()()()(21ssTsTKsDsGsDsTssDi1)()1(1)1)(1(1)()(221sTsKTTsTKsTssGsDsissi 比较式(358)与(352)的系数得到 解得 Ti=2KTs2 (359)由式(357)和(359)得到调节器的传函为:
38、(360)其中,把式(360)离散化,得到数字控制器的差分方程为 2222212TTTKTsisTKsKTsTsDIPss1121)(21212ssPKTTK1sITT)613()1()()1()(10keakeakuku)()1()()1()(10kekeakeakuku)613()1()()1()(10keakeakukuIPTTKa10PKa 1其中,由式(361)得到防止积分整量化误差的算式PKaa10IPTTK/其中,定义内存单元、清零采样,形成偏差计算u(K-1)+a0e(k)-a1e(k-1)取,e(k),作e(k)累加第k次积分结果输出u(k)有溢出?数据传送N取偏差值e(k)
39、e(k)0N输出值u(k)-1输出值u(k)+1YY)()1()()1()(10kekeakeakuku图3-28 轧机系统数字控制器程序框图INAL,PORT2;反馈值采样MOVDL,ALINAL,PORT1;给定值采样SUB AL,DL;计算e(k)MOVEK,AL;存放e(k)到EK单元MOVDL,AOP;取a0IMULDL;a0e(k)AXMOVBX,AX;MOVAL,EK1;取e(k-1)ALMOVDL,A1;a1DLIMULDL;a1 e(k-1)AXSUB BX,AX;a0e(k)-a1 e(k-1)BXADD BX,UK1;u(k-1)+a0e(k)-a1 e(k-1)BXMO
40、VAL,ICON;取MOVDL,EK;e(k)DLIMULDL;e(k)AXADDAX,MIDR;积分项累加JNOIT2;无溢出则转输出CMPDL,0;比较e(k)和0JGEIT1;e(k)大于等于0,则转IT1DECBX;e(k)小于0,则将u(k)减1JMPIT2IT1:INCBX;u(k)加1IT2:MOVMIDR,AX;累加和放入MIDRMOVAL,BL;输出u(k)OUTPORT3,ALMOVUK1,BX;u(k)u(k-1)MOVEK1,DLe(k)e(k-1)参数整定找最佳,从小到大顺序查 先是比例后积分,最后再把微分加 曲线振荡很频繁,比例度盘要放大 曲线漂浮绕大湾,比例度盘往
41、小扳 曲线偏离回复慢,积分时间往下降 曲线波动周期长,积分时间再加长 曲线振荡频率快,先把微分降下来 动差大来波动慢。微分时间应加长 理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低 三不完全微分的三不完全微分的PID算法算法 在标准PID算式中,当有阶跃信号输入时,微分项输出急剧增加,易引起调节过程的振荡,导致调节品质下降。为克服这一点,又要使微分作用有效,可采用不完全微分的PID算法。基本思想基本思想是:仿照模拟调节器的实际微分调节器,加入惯性环节,以克服完全微分的缺点。该算法的传函为 (323)式中,KD为微分增益。sKTsTsTKsEsUDDDIP111)()()(1-)
42、1()()()()(0kukekeTTKjeTTkeKkuDsDPkjIPTKTKTTKTTDDDDDDs,推导出不完全微分的不完全微分的PID位置算式为位置算式为 在单位阶跃信号单位阶跃信号作用下,完全微分与不完全微分输出特性的差异如图313所示。可以看出:(1)完全微分项对阶跃信号产生很大的微分输出信号,该信号急剧下降为0,易引起振荡。(2)不完全微分系统的微分作用是逐渐下降的,微分输出信号按指数规律逐渐衰减到0,因而系统变化较缓慢,不易引起振荡。其延续时间的长短与KD的选取有关,KD愈大,延续时间愈短;KD愈小,延续时间愈长。四纯滞后的补偿算法四纯滞后的补偿算法 带纯滞后的对象的传函可用
43、一阶惯性环节加纯滞后环节来描述 对象的这种纯滞后性质常引起系统产生超调或振荡,降低了系统的稳定性,为此,史密斯提出了一种纯滞后补偿的模型。1史密斯纯滞后补偿原理史密斯纯滞后补偿原理 图314为一单回路控制系统,D(s)为调节器的传函,GP(s)(1-e-s)为被控对象的传递函数,GP(s)为被控对象中不包含纯滞后部分的传函,e-s为被控对象纯滞后部分的传函。1)(sTeKsGPsP 史密斯纯滞后补偿原理补偿原理是:与D(s)并接一补偿环节GP(s)(1-e-s),用来补偿被控对象中的纯滞后部分,这个环节称为预估器预估器,如图315所示。)1)()(1)()(sPesGsDsDsDsPPsPsP
44、esGsDsGsDesGsDesGsDs)()(1)()()()(1)()()(整个纯滞后补偿器的传函为 经补偿后,系统的闭环传函为 (333)五微分先行五微分先行PID算法算法 微分先行PID算法是将微分运算放在前面。它有两种结构结构:1对输出量的微分(如图对输出量的微分(如图318a所示):所示):适用于给定量频繁升降的场合,为防止微分作用引起系统超调量过大,可只对输出进行微分。2偏差的微分(如图偏差的微分(如图318b所示):所示):对于给定值和偏差值都有微分作用,在串级控制中,主回路的输出作为副回路的给定,也应进行微分。六带死区的六带死区的PID控制控制 有些场合对控制精度要求不高,但
45、要求控制尽可能平稳。为了避免控制动作过于频繁,消除由此引起的振荡,可采用带死区的PID控制。基本思想基本思想是:设置一个死区B,不改变控制,其关系如下:0kuu输出BkeBke)()(死区B是以可调参数,B值太小,调节动作过于频繁,达不到稳定控制的目的;B值太大,又会产生很大的纯滞后,所以应根据实际情况而定。1采样周期应远小于对象的扰动信号的周期2.采样周期应远小于对象的时间常数3.考虑执行器的响应速度4.考虑对象所要求的调节品质5.考虑控制系统性能价格比6.考虑计算机所承担的工作量在编程过程中要考虑的问题:1.执行机构的极限保护:防止执行机构过开或过关;可检查输出余量2.防止极限环:对于很小的输出,使执行机构频繁动作,易引起振荡;可对计算机输出设一个不灵敏区。在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。对于温度系统:P(%)20-60,I(分)3-10,D(分)0.5-3 对于流量系统:P(%)40-100,I(分)0.1-1 对于压力系统:P(%)30-70,I(分)0.4-3 对于液位系统:P(%)20-80,I(分)1-5