1、道路勘察设计道路勘察设计第八章第八章 道路平面交叉设计道路平面交叉设计辽宁工程技术大学辽宁工程技术大学土木建筑工程学院土木建筑工程学院交通工程专业交通工程专业目录目录v第一节第一节 交叉口设计概述交叉口设计概述v第二节第二节 交叉口的交通组织设计交叉口的交通组织设计v第三节第三节 交叉口的车道数和通行能力交叉口的车道数和通行能力v第四节第四节 交叉口的视距与园曲线半径交叉口的视距与园曲线半径v第五节第五节 交叉口的拓宽设计交叉口的拓宽设计v第六节第六节 环形交叉口设计环形交叉口设计v第七节第七节 交叉口的立面设计交叉口的立面设计第一节第一节 交叉口设计概述交叉口设计概述v交叉口设计的基本内容和
2、要求v交叉口的交通分析v交叉口的类型及其适用范围v交叉口的计算行车速度交叉口设计的基本内容和要求v道路与道路(或铁路)在同一平面上相交的地方称为平面交叉,又称为交叉口。在道路网中,各种道路纵横交错,必然会形成很多交叉口。交叉口是道路系统的重要组成部分,是道路交通的咽喉。相交道路的各种车辆和行人都要在交叉口汇集、通过和转换方向。由于交叉口车多、人多以及车辆和车辆之间、车辆和过街行人间、特别是机动车和非机动车之间的抢道、相互干扰,不但会降低车速,阻碍交通,而且也容易发生交通事故。据国内外交通事故统计资料表明,约有3559的交通事故是发生在交叉口上。因此,如何正确设计交叉口,合理组织交通,对于提高交
3、叉口的通行能力,避免交通堵塞,减少交通事故,都具有重要的意义。v交叉口设计的基本要求保证车辆与行人在交叉口能以最短的时间顺利通过,使交叉口的通行能力能与各条道路的通行能力相适应;正确交叉口立面设计,保证转弯车辆的行车稳定;交叉口的设计要满足排水的要求。v交叉口设计的主要内容选择交叉口的形式,确定各组成部分的几何尺寸;合理布置各种交通设施;验算交叉口行车视距,保证安全通视条件;交叉口立面设计,布置雨水口和排水管道。交叉口的交通分析v交错点的种类 进出交叉口的车辆,由于行驶方向的不同,车辆与车辆之间的交错方式也不相同,可能产生的交错点也不一样。分流点 同一行驶的车辆向不同方向分离行驶的地点称为分流
4、点。合流点 来自不同行驶方向的车辆以较小的角度,向同一方向汇合行驶的地点称为合流点。冲突点 来自不同行驶方向的车辆以较大的角度相互交叉的地点称为冲突点。上述三类交错点都存在相互尾撞、挤撞、或碰撞的可能性,是影响交叉口行车速度、通行能力和发生交通事故的主要原因。其中冲突点对交通的干扰和行车的安全影响最大,其次是合流点,再次是分流点。因此,在交叉口设计时,应采取措施尽可能消灭冲突点,减少合流点。v交错点的分布情况 如图81所示,为三路、四路和五路平面交叉口在无交通管制时交错点的分布情况。其数量如表81所示。分析上述图表可得出以下两点结论:在无交通管制的交叉口,各种交错点都存在。其数量随相交道路条数
5、的增加而显著增加,其中增加最快的是冲突点。当相交道路均为双车道时,各交错点的数量可用下式计算 冲突点 式中:n交叉口相交道路的条数。因此,在规划和设计交叉口时,应力求减少相交道路的条数,尽量避免五条或五条以上道路相交,是交通简化。分流点合流点n(n-2)6212nnn产生冲突点最多的是左转弯车辆。如图81所示,四路交叉口若没有左转车流,则冲突点可由16个减少至4个,而五路交叉口则从50个减少至5个。因此,在交叉口设计中如何处理和组织左转弯车辆,是保证交叉口交通通畅和安全的关键所在。v减少或消灭冲突点的方法实行交通管制 在交叉口设置交通信号灯或由交通警察指挥,使发生冲突的车流从通行时间上错开。如
6、四路交叉口实行交通管制后,冲突点由16个减至2个,分流点与合流点分别由8个减至4个。若禁止车流左转弯,便可完全消灭冲突点。采用渠化交通 在交叉口内合理布置交通岛、交通标志和标线,或增设车道等,引导各方向车流沿固定路径行驶,以减少车辆之间的相互干扰。如环形平面交叉可消灭冲突点。修建立体交叉 将相互冲突的车流从空间上分开,使其互不干扰。这是解决交叉口交通问题最彻底的办法。交叉口的类型及其适用范围v平面交叉口的形式,取决于道路网的规划、交叉口用地及其周围的地形、地物情况,以及交通量、交通性质和交通组织。常见的交叉口形式有:“十”字型、“T”字型、“Y”字型?“X”字型、错位交叉和道路交叉等六种,这些
7、交叉口在平面上的几何图形,由规划道路网和街坊建筑的形状所决定,一般不易改变。但在具体设计中,常因交通量、交通性质以及不同的交通组织方式,把交叉口设计成各具特点的形式,可归纳为如下四类:v加铺转角式如图82所示,交叉口用适当半径的圆曲线平顺连接相交道路。此类交叉口形式简单,占地少,造价低,设计方便;但行车速度低,通行能力小。只适用于交通量小、车速低、转弯车辆少的三、四级公路或地方道路;设计时主要解决合适的转角曲线半径和足够的视距问题。v分道转弯式如图83所示,通过设置导流岛、划分车道等措施,使单向右转或双向左、右转车流以较大半径分道行驶的平面交叉。此类交叉口转弯车辆,尤其是右转弯车辆行驶速度和通
8、行能力都较高,适用于车速较高、转弯车辆较多的一般道路。设计时主要解决分道转弯半径、保证足够的视距和满足导流岛端部半径的要求。v扩宽路口式如图84所示,为使转弯车辆不影响其它车辆的正常行驶,在交叉口连接部增设变速车道和转弯车道的平面交叉。此类交叉口可减少转弯车辆对直行车辆的干扰,车速较高,事故率低,通行能力大;但占地多,投资较大。适用于交通量大、转弯车辆较多的二级公路和城市主干路。设计时主要解决拓宽的车道数,同时也应满足视距和转角曲线半径的要求。v环形交叉(俗称转盘)如图85所示,在交叉口中央设置中心岛,用环道组织渠化交通,使进入环道的所有车辆一律按逆时针方向绕岛单向行驶,直至所要去的路口的平面
9、交叉。环形交叉口的优点是:驶入交叉口的各种车辆可连续不断地单向行驶,没有停滞,减少了车辆在交叉口的延误时间;环道上消灭了冲突点,只有分流点与合流点,提高了行车的安全性;交通组织简便,不需信号管制;对多路交叉和畸形交叉,用环形交叉更为有利;中心岛绿化可美化环境。v环形交叉口的缺点是:占地面积大,城区改建困难;一般造价高于其它平面交叉口;增加了车辆的绕行距离,特别是左转弯车辆。当多条道路相交,通过交叉口的交通量总数为5003000辆/小时,且地形平坦时可考虑采用。但下列情况一般不宜采用:快速道路,交通量大的干线道路,有大量非机动车和行人交通的道路,桥头引道等。另外,按规划需要修建立体交叉处,近期可
10、考虑采用环形平面交叉作为过渡形式。对于环形交叉口,设计时主要解决中心岛的形状和半径、环道的布置和宽度、进出口曲线半径和视距要求等问题。交叉口的计算行车速度v交叉口的计算行车速度与路段的计算行车速度密切相关,二者速差大时会因减速过大而影响行车安全;对于车辆、行人较多的交叉口,当速差小而路段车速又高时,仍有行车危险。因此,确定交叉口的计算行车速度要格外慎重,主要根据以下原则:交叉口范围内直行交通的计算行车速度,原则上应与路段计算行车速度相同,若受限制必须降低车速时,与路段速度之差不应大于20km/h。转弯交通的计算行车速度,应适当降低;或按变速行驶需要而定,交叉范围车辆变速的加速度与减速度如表82
11、所示。对于城市道路,我国城规规定:交叉口内的计算行车速度应按各级道路计算行车速度的0.50.7倍计算,直行车取大值,转弯车取小值。第二节第二节 交叉口的交通组织设计交叉口的交通组织设计v车辆交通组织方法v行人及非机动车交通组织车辆交通组织方法v交叉口的通行能力小、车速低、行车安全性差,因此车辆交通组织的目的就是保证交叉口上车辆行驶安全、畅通,尽可能提高交叉口的通行能力。归纳起来就是:正确组织不同去向的车流,设置必须的车道数,合理布置交通岛、交通信号灯及地面各种交通标志等,使车辆在交叉口能按渠化交通的原则组织起来,顺序通过交叉口。交叉口车辆交通组织的方法有以下几种:v设置专用车道 组织不同车种和
12、不同行驶方向的车辆在各自的车道上分道行驶,互不干扰。如图86所示,根据行车道宽度和左转、直行、右转车辆的交通量大小可作出多种组合的车道。a)左转、直行、右转车辆组成均匀,各设一专用车道;b)直行车辆很多且左转、右转车辆也有一定数量时,设二条直行车道和左、右转各一条车道;c)左转车多而右转车少时,设一条左转车道,直行和右转车共用一条车道;d)左转车少而右转车多时,设一条右转车道,直行和左转车共用一条车道;e)左转和右转车辆都减少时,分别与直行车合用车道;f)行车道宽度较窄,不设专用车道,只划快、慢车分道线;g)行车道宽度很窄时,快、慢车也不划分。v左转弯车辆的交通组织 左转弯车辆是引起交叉口车流
13、冲突点增多的主要原因,合理地组织左转弯车辆的交通,是保证交通安全,提高交叉口通行能力的有效方法。左转弯车辆的交通组织方法主要有以下几种:设置专用左转车道 如图86 a b c 所示,设置专用左转车道后可避免阻碍直行车辆的通行,左转车辆必须在左转车道上等待开放或寻机通过。实行交通管制 通过信号灯控制或交通警察手势指挥,在规定时间内不准左转。变左转为右转(1)环形交通 如图87 a 所示,利用环道,车辆逆时针单向交通,变左转为右转。(2)街坊绕行 如图87 b 所示,使左转车辆环绕邻近街坊道路右行以实现左转。v组织渠化交通 在车道上划线,或用绿带和交通岛来分隔车流,使各种不同类型和不同速度的车辆能
14、象渠道内的水流那样,沿规定的方向互不干扰地行驶,这种交通称为渠化交通.渠化交通的具体做法 渠化交通的主要作用是保证行车安全,具体表现在:(1)利用分车线或分隔带、交通岛等。如图88 a 所示,把不同方向和速度的车辆划分车道行驶,使司机或行人很容易看清互相行驶的方向,避免车辆相互侵占车道,因而可减少车辆相互碰撞的机会,增加行车安全。(2)如图88 b c 所示,利用交通岛的布置,限制车辆行驶方向,使斜交对冲车流为直角交叉或锐角交叉。(3)如图88 d e 所示,利用交通岛的布置,限制车道宽度,控制车速,防止超车。(4)可利用设置的交通岛或分隔带,设置各种交通标志,并可作为行人过街时避让车辆的安全
15、岛。(5)如图88 f 所示,在交通量大、车速较高的交叉口,还需要考虑设置变速车道和候驶车道,以利左转弯车辆转向行驶和变速行驶的需要。交通岛 在渠化交通中,最常用的是高出路面的交通岛。按其作用不同可分为方向岛、分隔岛、中心岛和安全岛等。(1)方向岛(导向岛)用以指引行车方向,它在渠化交通中起着很大的作用,许多复杂的交叉口,往往只需用几个简单的方向岛,就能组织好交通,减少或消灭冲突点。方向岛还可用于约束车道,使车辆减速转弯,保证行车安全。(2)分隔岛 是用来分隔机动车和非机动车、快速车和慢速车,以及对向行驶的车流,保证行车速度和交通安全的长条形交通岛,有时也可在路面上划线来代替分隔岛。(3)中心
16、岛 是设在交叉口中央,用来组织左转弯车辆和分隔对向车流的交通岛。(4)安全岛 供行人过街时避让车辆之用。在宽阔、交通繁忙的街道上,宜在人行横道线中央设置安全岛,以保证行人过街的安全。交通岛的形状与尺寸 交通岛的形状为直线与圆曲线的组合图形。导流用的交通岛(指方向岛、分隔岛)的要素如图89所示,其最小尺寸规定如表83、表84和表85。各种交通岛的面积在城区不小于5m2,其它地区不小于7m2。用缘石标界的交通岛一般高出路面1525cm,有行人通过时1215cm。v调整交通组织当旧城区道路改建困难时,可采取改变交通路线、限制车辆行驶、控制行驶方向、组织单向交通,以及适当封闭一些主要干道上的支路等措施
17、,减少或简化交叉口的交通,以提高整个道路网的通行能力。v采用自动控制的交通信号指挥系统,提高行车速度和通行能力。行人及非机动车交通组织v公路设计中往往不考虑行人和非机动车交通。但对城市道路因大量行人和非机动车的存在,合理组织行人和非机动车交通,是消除交叉口交通堵塞,保证交通安全的最有效方法。v行人交通组织 行人交通组织的主要任务是组织行人在人行道上行走,在人行横道线上安全过街,使人、车分离,干扰最小。人行道 人行道通常布置在车行道两侧,在交叉口处相邻道路的人行道互相连通,并应将转角处人行道加宽,以适应人流集中转向的需要。交叉口处人行道的宽度原则上不小于路段人行道的宽度,同时还应为过街行人提供等
18、待场地;若因设置附加车道不得已压缩人行道时,应根据人流量决定最小宽度;当采用人行天桥或人行地道时,人行道宽度还应考虑梯道或坡道出人口的宽度;在人行道上除了必要的道路标志、交通信号、照明及栏杆等外,不允许布置其它设施,以保证人行道的有效宽度满足要求。人行横道 为使行人安全、有序地横穿车行道,应在交叉口设置人行横道,人行横道两端应设置信号灯。人行道和人行横道相互连接,共同组成“步行道网”,应保证行人能到达任何地点。人行横道应设置在驾驶员容易看清的位置,标线应醒目。人行横道可布置在交叉口人行道的延续方向后退45m的地方(如图810 a 所示);当转角半径较大时可将人行横道设在圆弧段内(如图810 b
19、 所示)。原则上人行横道应垂直于道路设置,这样可使行人过街距离最短;但如道路斜交时,人行横道可与相交道路平行(如图810 c 所示)。T型和Y型交叉口的人行横道可按图810 d e 设置。人行横道的宽度主要取决于过街人流量的大小,一般应比路段人行道宽些。其最小宽度为4m;当过街人流量较大时,可适当加宽,但不宜超过8m。人行横道的长度应有所限制。当一次横穿距离较长时,会使过街行人思想紧张,会感到很不安全。因此,作出如下规定:当机动车车道数大于或等于6条,或人行横道长度大于30m时,应在道路中线附近设置安全岛,其宽度不小于1m。在设置信号灯控制或设置停车标志的交叉口,应在路面上标绘停车线,指明停车
20、位置。当有人行横道时,停车线应布置在人行横道线后至少1m处,如图810所示,并应与人行道平行;对无人行横道的交叉口,停车线应尽量靠近交叉口,以减少交叉口的范围,提供通行能力,但不得影响相交道路的交通 人行地道与人行天桥 当交叉口宽阔、人流量多、车流量大且车速高时,可考虑设置人行地道或人行天桥,这是解决行人交通安全最彻底、最有效的办法。v非机动车交通组织在交叉路口,非机动车道通常布置在机动车道与人行道之间。当车流量不大时,非机动车随机动车按交通规则在右侧行驶,不设分离设施;当车流量较大时,可采用分隔带或墩将机动车与非机动车分离行驶,减少相互干扰。上述两种情况,非机动车的交通组织与机动车共同考虑。
21、当车流量很大、机动车与非机动车之间干扰十分严重时,可考虑采用立体非机动车交通组织形式,并与人行天桥或人行地道一起考虑。一般行人宜用梯道型升降方式;非机动车应采用坡道型;当因地形或其它原因受限制时,可采用梯道带坡道的混合型升降方式。第三节 交叉口的车道数和通行能力v交叉口的车道数v交叉口的通行能力交叉口的车道数v交叉口各相交道路的车道数,不应小于路段上的车道数,并应根据交通控制方法、交通量、车道的通行能力及交叉处用地条件等决定。在城市道路上还应考虑大量非机动车交通存在的需要。v从渠化交通考虑,交叉口最好按车种和方向分别设置专用车道,使左转、直行、右转的机动车和非机动车能在各自的专用车道上排列等候
22、或行驶,避免相互干扰,提高通行能力。但在交通量较小的交叉口设置过多的车道是不经济的,可考虑车道混合行驶 v所设置的车道数,其通行能力的总和必须大于高峰小时交通量,否则,交叉口会产生拥挤或阻塞现象。v交叉口的车道数可按下述方法确定:选定交叉口的形式;进行交通组织设计,并初定车道数;对初定的车道数进行通行能力验算。如车道通行能力总和小于高峰小时交通量,则必须增加车道数,并重新验算直到满足交通量的要求为止。v为了充分发挥整条道路的通行能力,交叉口的设计通行能力应与路段的通行能力相适应。由于受信号控制的影响,每条车道在交叉口处的通行能力总要比路段上的小,因此交叉口的车道数不应小于路段上的车道数。一般情
23、况下,交叉口的车道数宜比路段上多设一条。交叉口的通行能力 v有信号控制交叉口的通行能力v有信号控制交叉口的通行能力常用“停车线断面法”确定,即以进道口停车线为基准断面,凡通过该断面的车辆即认为以通过交叉口,据此各车道的通行能力,各进口车道通行能力之和即为交叉口的可能通行能力。交叉口停车线断面上不同车道的通行能力按以下公式计算v一条直行车道的通行能力N直 (辆/小时)(8-2)式中:T信号周期(s),一般T6090s;Tg一个周期内的绿灯时间(s);vS直行车辆通过交叉口的车速(m/s);a平均加速度,据观测,小型车为0.60.7m/s2,中型车为0.50.6m/s2,大型车为0.40.5m/s
24、2;tS直行车平均车头时距(s)。据观测,车多时为2.22.3s,车少时为2.72.8s,平均2.5s,大型车为3.5s。SSgtavTTN2/3600直v一条右转车道的通行能力N右 (辆/小时)(8-3)式中:tr右转车平均车头时距(s)。据观 测,平均tr=3.03.5s。v 一条左转车道的通行能力N左(1)有左转专用信号显示时 (辆/小时)(8-4)式中:T信号周期(s),一般T6090s;T1一个周期内的左转显示时间(s);v1左转车辆通过交叉口的车速(m/s);t1左转车平均车头时距(s)。取t12.5s。rtN3600右1112/3600tavTTN左(2)无左转专用信号显示时 利
25、用绿灯时间 当有左转专用车道而无左转信号显示时,驶入左转车道的车辆,可在绿灯时间内,利用对向直行车流中可能出现的空档来实现左转。加设平均两个直行车位的空档可供一辆左转车穿越,则每个周期内可穿越的左转车辆按下式计算 (辆/周期)(8-5)式中:n1每个周期绿灯时间内可穿越的左转车辆(辆/周期);对向直行车道一个周期的通行能力(辆/周期);对向直行车道一个周期的实际通行能力(辆/周期);利用黄灯时间 黄灯亮时通过车数为 (辆/周期)(8-6)式中:TY每周期黄灯时间(s)。因此,一条左转车道的通行能力N左为 (辆/小时)(8-7)直N直NSSgtavTN2/直1122/tavTnY213600nn
26、TN左21直直NNnv一条直左混行车道的通行能力N直左 一条车道上有直行、左转混合行驶时,因去向不同而相互干扰,应乘以折减系数K。则 (辆/小时)(8-8)式中:1直左车道中左转车所占比例;K折减系数,取K=0.70.9。v一条直右混行车道的通行能力等于一条直行车道的通行能力。v一条直左右混行车道的通行能力等于一条直左混行车道的通行能力。KNN1211直直左v无信号控制交叉口的通行能力v当主要道路与次要道路相交时,若次要道路交通量不大,可不设交通信号控制。根据主要道路优先通行的交通规则,次要道路上的车辆必须等待主要道路上的车辆之间出现足够长的间隔时间而通过交叉口。v主要道路上的车流可视为无交叉
27、的连续交通流,车辆间出现的间隔一般服从负指数分布。但并非所有间隔都可供次要道路上车辆汇入或穿过,只有当出现的间隔时间足够大(一般应大于临界间隔)时,次要道路上的车辆才可能汇入或穿过。则次要道路最大交通量可按下式计算 (辆/小时)(8-8)式中:Q主主要道路双向交通量(辆/小时)q主要道路交通流率,q=Q主/3600(辆/秒);主要道路临界间隔时间(s)。对停车标志控制的交叉口为68s;对让路标志为57s;次要道路最小车头时距(s)。对停车标志控制的交叉 口为5s;对让路标志为3s;v 则无信号控制交叉口的通行能力为主要道路的双向交通量Q主与次要道路最大交通量Q次之和。qqaeeQQ1主次第四节
28、 交叉口的视距与园曲线半径 v交叉口的视距v交叉口的圆曲线半径v视距三角形为了保证交叉口上行车安全,驾驶员在进入交叉口前的一段距离内,应能看到相交道路上的行车情况,以便能及时采取措施顺利驶过或安全停车。这段必要的距离应该大于或等于停车视距ST。如图811所示,由相交道路上的停车视距所构成的三角形称为视距三角形。在其范围内不能有任何阻挡驾驶员视线的障碍物。视距三角形绘制的方法与步骤为:(1)确定停车视距ST 停车视距可用前述计算公式计算,或根据相交道路的计算行车速度查表86确定。一般应采用表86中的一般值;当受地形、地物等条件限制时,也可采用表中低限值,但必须采取设置限速标志等措施。(2)找出行
29、车最危险的冲突点 对于不同形式的交叉口,其最危险冲突点的找法不尽相同。对于十字型交叉口,如图811 a 所示,最靠右侧第一条直行机动车道的轴线与相交道路最靠中心线的第一条直行车道的轴线所构成的交叉点为最危险的冲突点。对于T型或Y型交叉口,如图811 b 所示,直行道路最靠右侧第一条直行车道的轴线与相交道路最靠中心线的一条左转车道的轴线所构成构成的交叉点为最危险的冲突点。表86 停车视距计算行车速度(km/h)100806050403020停车视距一般值1601107560403020低限值120755545302515(3)从最危险的冲突点向后沿行车轨迹线各量取停车视距ST。(4)连接末端构成
30、视距三角形。v识别距离 为保证车辆安全顺利通过交叉口,应使驾驶员在交叉口之前的一定距离能识别交叉口的存在及交通信号和交通标志等,这一距离称为识别距离。该识别距离随交通管制条件而异。无信号控制的交叉口 对无任何信号控制的交叉口,通常都是低等级、交通量小及车速不高的次要交叉口,识别距离可采用各相交道路的停车视距(见表86)。有信号控制的交叉口 对有信号控制的交叉口,识别距离应保证驾驶员能看清交通信号和显示内容,并有足够的时间制动减速直至停车,但这种制动停车决非急刹车。因此,有信号控制的交叉口的识别距离可按下式计算。(m)(8-10)式中:SS交叉口的识别距离(m);V路段计算行车速度(km/h);
31、a减速度(m/s2),取;a=2 m/s2;t识别时间(s)。在公路上取10 s,在城市道路上取6 s。aVtVSS266.32停车标志控制的交叉口 对停车标志控制的交叉口,一般为主要道路与次要道路交叉,主次关系明确。其识别距离 的计算仍可按式(810)计算,取识别时间t=2s。按上述方法计算的识别距离见表87。同样,在此范围内不能有任何障碍物。交叉口的圆曲线半径v相交道路的最小圆曲线半径 为使直行车道在交叉口范围内能以一定速度顺利行驶,应对交叉范围相交道路平曲线最小半径或最大超高横坡度加以限制。确定圆曲线最小半径仍然采用第二章推导的计算公式,即 在交叉口范围内,主要道路的计算行车速度V仍采用
32、路段规定值,次要道路可取路段的0.7倍;横向力系数一般为0.150.20;超高横坡度ih 以不大于2%为宜,最大不应超过6。根据以上取值,可计算出相交道路最小园曲线半径如表88所示。hiVR1272v分道转弯式交叉口最小圆曲线半径 当右转弯车辆较多时,为保证右转车辆能以规定的速度分道行驶,应对最小转弯半径加以限制,如表89所示。表中数据是取横向力系数=0.160.20,最小圆曲线半径的一般值采用ih 2计算,极限值采用ih 6计算出来的。v加铺转角式交叉口转弯半径 如图812所示,为了保证各种右转车辆能以一定速度顺利转弯,交叉口处的缘石或行车道边缘应做成圆曲线或多心复曲线,圆曲线的半径R1称为
33、转角半径,可按下式计算。(m)(8-11)式中:B机动车道宽度(m),一般采用3.5m;F非机动车道宽度(m);R右转车道中心线半径(m),可按上述圆曲线半径计算公式计算。据观测,右转车速一般在V1025km/h之间,横向力系数=0.150.20,超过横向坡度ih 263+。表810为交叉口的最小转角半径。在条件允许时应尽量采用较大转角半径,有利于行车和以后交通发展的需要。FBRR21第五节 交叉口的拓宽设计 在相交道路交通量较大转弯车辆较多车速过快进口处采用原有车道数转弯、直行车辆受阻分流、合流困难交通事故的发生交通事故的发生v拓宽的车道数主要取决于进口道的各向交通量、交通组织方式和车道的通
34、行能力等。一般应比路段单向车道数多增加一至二条车道。v进口道车道的宽度,应尽量与路段保持一致。如因占地等条件限制,需要将车道变窄时,最窄不得小于3m,一般在33.5m之间。v交叉口的拓宽设计主要解决拓宽车道的设置条件、设置方法以及长度计算三个问题。v设置条件v设置方法v拓宽车道的长度v平面交叉符合下列条件时应设右转车道:平面交叉角小于60,且右转车较多时;右转交通量大,且为主要交通方向时;右转车辆所需车速较高时;有特殊需要时。v平面交叉处下列条件外应设左转车道不允许左转弯时;道路交通量很小,通行能力有富裕时;相交道路计算行车速度在40km/h以下,设计小时交通量小于200辆;无对向直行交通,且
35、进口道车道数较路段多一条时。v右转车道设置方法 如图813所示,一般在进口道的右侧或同时在出口道的右侧拓宽右转车道。v左转车道设置方法 左转车道是向进口道左侧拓宽的,依据相交道路是否设置中间带和中间带的宽窄,可分别采取不同的方法实现左转车道。宽型中间带 当设有较宽中间带(一般不小于4.5m)时,如图814 a 所示,将道口一定长度的中间带压缩宽度,由此增辟出左转车道。窄型中间带 当设有较窄中间带(一般小于4.5m)时,如图814 b 所示,压缩中间带后宽度不够,此时可将道口单向或双向车道线向外侧偏移,增加不足部分宽度。无中间带 当相交道路不设中间带时,可通过两种途径增辟左转车道。一是向进口道的
36、一侧或两侧拓宽,增加进口道路幅总宽度,以便在进口道中心线附近辟出左转车道,如图814 c 所示;二是不扩宽进口道,占用靠近中心线的对向车道作为左转车道。v右转车道的长度 如图815所示,交叉口的进口道设置了右转车道后,为不影响横向相交道路上的直行车流,在横向相交道路的出口道应设加速车道,且其长度应保证加速所需长度;进口道处右转车道的长度应能满足右转车辆减速所需长度,同时应保证右转车不受相邻等候车队长度的影响。渐变段长度ld 渐变段长度可按右转弯车辆以路段平均速度VA行驶时,每秒钟横移1.0m计算,即 (m)(8-12)式中:VA路段平均行驶速度(km/h);B右转车道宽度(m)。最小渐变段长度
37、可按表811选用。BVlAd6.3最小渐变段长度选用表计算行车速度 (km/h)1008060403020最小渐变长度 (m)806040201020表811减速所需长度lb和加速所需长度la 计算式 (m)(8-13)式中:VA路段平均行驶速度(km/h);VR减速后的末速度或加速前的初速度(km/h);a减速度或加速度(m/s2)。另外,进口道减速所需长度lb和出口道加速所需长度la 可采用表812所列数值。aVVllRAab26)(22或变速车道长度计算行车速度平均行驶速度(km/h)(km/h)到停车到20km/h到40km/h从停车从20km/h从40km/h100801009070
38、25023019080606050301401208060504030201008040504030206050403020104020302010208060454025908050605030201065552550402015403040301510251530201010加速所需长度la(m)次要道路路别主要道路减速所需长度lb(m)(表812)等候车队长度ls 右转车道长度应能使右转车道长度应能使右转车辆从直行车道最右转车辆从直行车道最长的等候车队的尾车后长的等候车队的尾车后驶入拓宽得车道其长度驶入拓宽得车道其长度为为lsnln(m)式中:式中:ln直行等候车辆所占长度(m),一般取
39、612m;小型车取最低值,大型车取最高值n一次红灯受阻得直行车辆数,可用下列计算每条直行车道通行能力(1右转车比例)每小时周期数/该向红灯占周期长得比例n所以,右转车道长度 lr为 (m)(8-15)式中:lr右转车道长度(m);ld渐变段长度(m);lb减速所需长度(m);lS等候车道长度(m)。出口道加速车道长度lP为 (m)(8-16)式中:lP出口道加速车道长度(m);la加速所需长度(m);ld渐变段长度(m);Sbdrllll,maxadplllv左转车道的长度 左转车道长度仍采用公式(815)计算。式中的lS分如下两种情况确定:1 有信号控制的交叉口 式中:左转等候车辆数,可按下
40、式计算无信号控制的交叉口 对于无信号控制的交叉口,考虑到车辆到达的随机性,可按平均每分钟左转弯车辆数的2倍计算,即 (8-17)nSlnln每小时的周期数左转车比例车道数一条车道的通行能力 nnSlnl 2第六节 环形交叉口设计v中心岛的形状与半径v环道的宽度v交织角交织角v环道外缘线形及进出口曲线半径环道外缘线形及进出口曲线半径v环道的横断面环道的横断面v环形交叉口的通行能力(自学)环形交叉口的通行能力(自学)v中心岛的形状与半径 环形交叉口的组成如图816所示。中心岛的形状 中心岛的形状应根据交通流特性、相交道路的等级和地形地物等条件确定。原则上应保证车辆能以一定速度顺利完成交织运行,有利
41、于主要道路方向车辆行驶方便,应满足交叉所在地的地形、地物和用地条件的限制。中心岛的形状主要有:1 圆形 采用居多。2 圆角方形或菱形 有时采用。3 椭圆形 适用于主、次道路相交的交叉口。4 复合曲线形 适用于交角不等的畸形交叉。5 其它形状 可视地形、地物和交角等,采用其它规则或不规则的几何形状。中心岛半径下面以圆形中心岛为例,介绍中心岛半径的计算方法。1 按计算行车速度的要求,可由下式计算 (m)(8-18)式中:R中心岛半径(m);b紧靠中心岛的车道宽度(m);横向力系数,大客车=0.10.15,小客车=0.150.2;ih环道横坡度(),一般采用1.5%;V环道计算行车速度(km/h)。
42、国外一般采用路段计算 行车速度的0.7倍。我国实测资料:公共汽车为0.5 倍,载重汽车为0.6倍,小客车为0.65倍。21272biVRh2 按交织段长度的要求 所谓交织就是两条车流汇合交换位置后又分离的过程。交织长度的大小主要取决于车辆在环道上的行驶速度,应能满足汽车以一定车速相互交织并连续行驶,最小应不小于4S的行驶距离。如图817所示,当两个路口之间有足够的距离,此时在该环道上行驶的车辆,均可在合适的时机互相交织,该段距离即为交织段长度,其位置大致可取相邻道路机动车道外侧边缘延长线与环道中心线交叉点之间的弧长。中心岛半径必须满足两个路口之间最小交织段长度的要求,否则,在环道上行驶中需要互
43、相交织的车辆,就要停车等候,这是绝对不允许的。环道上所需的最小交织段长度如表813所示。按交织段长度所要求的中心岛半径为 (m)(8-19)式中:n相交道路的条数;l相邻路口之间的交织段长度(m),可查表813;B环道宽度(m);BP相交道路的平均路宽(m)。由上式可以看出,交叉口相交道路的条数越多,为保证最小交织段长度的要求,则中心岛的半径就越大,将会大大增加交叉口的用地面积和车辆上在环道上的绕行距离,这样既不经济也不合理。因此,环形交叉口的相交道路以不多于六条为宜。22BBlnRPd对四路相交的环形交叉口,可用式(818)和(819)分别计算中心岛半径,然后选取较大者。对中心线夹角差别较大
44、或多路交叉口,也可以先按式(818)确定中心岛半径R,然后再按下式验算其交织段长度是否符合要求:或 (8-20)式中:相交道路中心线的最小夹角()。当用公式(820)计算的l大于最小交织段长度时,符合要求;否则,增大R重新验算,直至符合要求为止。根据实践经验,中心岛最小半径如表814所示。PBBRnl22PBBRl2180v环道的宽度取决于相交道路的交通量和交通组织。一般情况下,靠近中心岛的一条车道作绕行之用,最靠外侧的一条车道供右转弯之用,中间的一至二条车道为交织之用,这样,环道上一般设计三至四条车道。实践证明,车道越多,不仅难于利用,反而易使行车混乱,导致不安全。据观测,当环道车道数从二条
45、增加到三条时,通行能力提高得最为显著;而当车道数增加到四条以上时,通行能力增加得很少。因此,环道的车道数一般采用三条为宜;如交织段长度较大时,环道车道数可布置四条;若相交道路的车行道较窄,也可设二条车道。如果采用三条机动车道,每条车道宽3.53.75m,并考虑弯道的加宽值。则当中心岛半径为2040m时,环形机动车道的宽度一般为1516m。对非机动车可与机动车混行或分行。为保证交通安全,减少相互干扰,一般以分行为宜,可用分隔带、墩或标线等分隔。非机动车道宽度应视具体情况而定,一般不小于相交道路中的最大非机动车行车道宽度,也不宜超过8m。环道的宽度v如图818所示,交织角是进环车辆与出环车辆轨迹的
46、平均相交角度。交织角的大小取决于环道的宽度和交织段的长度。环道宽度越窄,交织段长度越大,则交织角越小,行车就越安全。但交织角越小,需要的交织段长度越大,中心岛半径也就越大,占地要相应增加。所以,交织角要有一个合适的值,一般控制在2030之间为宜。交织角v环道外缘线形 从满足交通需要和工程节约考虑,如图8-19.v环道进出口曲线半径 环道进、出口曲线半径取决于环道的计算行车速度。为使进环车辆的车速与环道车速相适应,应对进环车辆的车速加以限制,一般环道进口曲线半径采用接近或小于中心岛的半径,且各相交道路的进口曲线半径不要相差太大。环道出口的曲线半径可较进口曲线半径大一些,以便车辆加速驶出环道。环道
47、外缘线形及进出口曲线半径v环道的横断面形状对行车的平稳和路面的排水有很大的关系,而横断面的形状又取决于路脊线的选择。通常情况下,环道横断面的路脊线设在交织车道的中间;若机动车与非机动车之间设有分隔带时,其路脊线也可设在分隔带上。如图820所示,图中虚线为路脊线,箭头指向为排水方向。显然,应在中心岛的周围设置雨水口,以保证环道内不产生积水。另外,进、出环道处的横坡度宜缓一些。环道的横断面环形交叉口的通行能力(自学)第七节 交叉口的立面设计 交叉口立面设计也称竖向设计,其目的是要统一解决相交道路之间以及交叉口和周围建筑物之间在立面位置上的行车、排水和建筑艺术三方面的要求。使相交道路在交叉口内能有一
48、个平顺的共同面,便于车辆和行人的交通;使交叉口范围内的地面水能迅速排除;使车行道和人行道的各点标高能与建筑物的地面标高相协调而具有良好的空间观感。本小节主要内容v一、交叉口立面设计的原则和要求v二 交叉口立面设计的基本类型v三、交叉口立面设计的方法与步骤 一、交叉口立面设计的原则和要求 立面设计主要取决于相交道路的等级、交通量、横断面形状、纵坡的大小和方向以及周围地形等。交叉口立面设计的基本要求是:首先应满足主要道路的行车方便,在不影响主要道路行车平顺的前提下,适当变动主要道路的纵坡和横坡,以照顾次要道路的行车需要。交叉口立面设计的一般原则为:1、相同等级道路相交时,一般维持各自的纵坡不变,而
49、改变它们的横坡度。通常是改变纵坡较小道路的横断面形状,使其横断面的横坡度与纵坡较大道路的纵坡一致。2、主要道路与次要道路相交时,主要道路的纵、横断面均维持不变,而将次要道路双坡横断面,逐渐过渡到与主要道路纵坡相一致的单坡横断面,以保证主要道路的交通便利。3、设计时至少有一条道路的纵坡方向背离交叉口,以利于排水。如遇特殊地形,所有道路纵坡方向都向着交叉口时,必须在交叉口内设置雨水口和排水管道,以保证排水要求。4、在交叉口范围内布置雨水口时,应不使地面水流过交叉口的人行横道,也不应使地面水在交叉口内积水或流入另一条道路。所以,雨水口应设在人行横道之前或低洼处。5、交叉口范围内横坡要平缓些,一般不大
50、于路段的横坡,以利于行车。纵坡度宜不大于2,困难情况下应不大于3。6、交叉口立面设计标高应与周围建筑物的地坪标高协调一致。二 交叉口立面设计的基本类型 (1)如图822 a 所示,处于凸形地形上,相交道路的纵坡方向均背离交叉口。设计时使交叉口的纵坡与相交道路的纵坡一致,适当调整一下接近交叉口的路段横坡,让雨水流向交叉口四个转角的街沟或路基外排除,交叉口内不需设置雨水口。交叉口立面设计的形式,主要取决于交叉范围相交道路的纵坡、横坡及地形。以十字型交叉口为例,按其所处地形及相交道路纵坡方向,可划分为六种基本类型,如图822所示。图8-22(a)(2)如图822 b 所示,处于凹形地形上,相交道路的