静定结构位移计算授课用-课件.ppt

上传人(卖家):晟晟文业 文档编号:4297553 上传时间:2022-11-27 格式:PPT 页数:68 大小:2.94MB
下载 相关 举报
静定结构位移计算授课用-课件.ppt_第1页
第1页 / 共68页
静定结构位移计算授课用-课件.ppt_第2页
第2页 / 共68页
静定结构位移计算授课用-课件.ppt_第3页
第3页 / 共68页
静定结构位移计算授课用-课件.ppt_第4页
第4页 / 共68页
静定结构位移计算授课用-课件.ppt_第5页
第5页 / 共68页
点击查看更多>>
资源描述

1、静定结构位移计算2A第六章 静定结构的位移计算61 结构位移的概念62 变形体系的虚功原理63 计算结构位移的虚力原理64 图乘法65 静定结构支座移动时的位移计算66 静定结构温度变化时的位移计算67 线弹性结构的互等定理 31.结构位移产生的原因 结构是由可变形的材料做成的,在外部因素作用下,结构将产生变形和位移。变形:是指结构形状的改变。位移:是指结构各处位置的移动。61 结构位移的概念引起结构位移的原因(1)荷载;(2)温度改变;(3)支座位移;(4)制造误差;(5)材料收缩42.结构位移的种类(1)某点的线位移(2)某截面的角位移(3)两点间的相对线位移(4)两截面间的相对角位移线位

2、移:角位移:绝对位移相对位移61 结构位移的概念PABCBCB(CBCBC线位移:角位移:一般来说,结构的位移与结构的几何尺寸相比都是极其微小的。第6章 结构位移的计算结构的位移1、线位移 结构在外部因素作用下,将产生尺寸形状的改变,这种改变称为变形;由于变形将导致结构各结点位置的移动,于是产生位移。(1)水平线位移:H(2)铅直线位移:V2、角位移:cCCH CV C 3、“相对位移”与“绝对位移”BAAB BAAB AppAB A B BA BppcC第6章63.计算位移的目的 (1)为了校核结构的刚度。(2)结构制造和施工的需要。(3)为分析超静定结构打下基础。另外,结构的稳定和动力计算

3、也以位移为基础。结构力学中计算位移的一般方法是以虚功原理为基础的。本章先介绍变形体系的虚功原理,然后讨论 静定结构的位移计算。起拱高度61 结构位移的概念7复习功的概念62 变形体的虚功原理PABP常力作的功COSPT 力偶作的功PPdMPdTPP PT21 P当静力加载时,即:P由0增加至P 由0增加至实功计算公式的建立位移荷载oABpypdydpy(A)dypdTT0y0 (B)ypfy 21 :A)(C)(000 pdypydypdTTBy)再再入入(入入代代)(:CPfyppy 可可确确定定时时,由由第6章962 变形体的虚功原理1.外力虚功、广义力及广义位移(1)位移的双脚标符号AB

4、P11211P22212k j位移发生的位置位移发生的位置产生位移的原因产生位移的原因位移的大小位移的大小AB122P2122AB112P11211062 变形体的虚功原理1.外力虚功、广义力及广义位移(2)外力的虚功ABP11211P22212AB122P2122AB112P1121实功实功:力在本身引起的位移上作的功。:力在本身引起的位移上作的功。实功是力(位移)的二次函数。实功是力(位移)的二次函数。虚功虚功:力在其它因素引起的位移上作:力在其它因素引起的位移上作的功。力与位移是彼此无关的量,分的功。力与位移是彼此无关的量,分别属于同一体系的两种彼此无关的状别属于同一体系的两种彼此无关的

5、状态。态。虚功是力(位移)的一次函数。虚功是力(位移)的一次函数。Tkj=Pkkj考察力作功的过程 静力加载:0P虚位移与虚力虚位移与虚力虚功并不是不存在的功,只是强调作功过程中位移与力无关的特点。虚功是代数量,有正有负。虚功是代数量,有正有负。1162 变形体的虚功原理1.外力虚功、广义力及广义位移(3)广义力及广义位移作作功功的的两两因因素素力:力:集中力、力偶、一对集中力、一对力偶、一个力系集中力、力偶、一对集中力、一对力偶、一个力系 统称为统称为广义力广义力位移:线位移位移:线位移、角位移、相对线位移、相对角位移、一组位移角位移、相对线位移、相对角位移、一组位移 统称为统称为广义位移广

6、义位移(4)虚功的两种状态 力状态 位移状态AB122P2122AB112P1121122.变形体的虚功原理:设变形体在力系作用下处于平衡状态,又设变形体由于其它原因产生符合约束条件的微小的连续变形,则外力在相应位移上所做的外力虚功T 恒等于整个变形体各个微段内力在变形上所做的内力虚功W。T=W (31)式(31)称为虚功方程,式中 TW外力虚功 内力虚功32 变形体的虚功原理13AB力状态PqMds3.内力虚功的计算RARB位移状态位移状态qN NN N+d+dN NQ QQ Q+d+dQQMMMM+d+dMMdsdsdsduds dvd dsAB62 变形体的虚功原理微段ds上的内力虚功为

7、dW=Ndu+Qdv+Md整个结构的内力虚功为sMsQsNWddds,sv,suddddddsMsQsNddd1462 变形体的虚功原理3.虚功原理的两种应用平面杆件结构的虚功方程为2)-(3 dddsMsQsNWT虚位移原理虚力原理151.位移计算的一般公式 设平面杆系结构由于荷载、温度变化及支座移动等因素引起位移如图。P2P1KkkKKjKj利用虚功原理c1c2c3kkPK=1实际状态位移状态ds虚拟状态力状态dsKkkkM、Q、Njjj、v、uddd外力虚功332211jCRCRCRPKKT=CRKj内力虚功W=jkjkjkdMdvQduN可得jkjjkKjdMdvQduNCR 求任一指

8、定截面K K沿任一指定方向 kk上的位移Kj。t1t2cRdMdvQduNjkjkjkKj(33)这便是平面杆系结构位移计算的一般公式,若计算结果为正,所求位移Kj与假设的 PK=1同向,反之反向。这种方法又称为单位荷载法单位荷载法。63计算结构位移的虚力原理1663计算结构位移的虚力原理适用范围与特点:适用范围与特点:2)形式上是虚功方程,实质是几何方程。形式上是虚功方程,实质是几何方程。关于公式普遍性的讨论:关于公式普遍性的讨论:(1)变形类型:轴向变形、剪切变形、弯曲变形。)变形类型:轴向变形、剪切变形、弯曲变形。(2)变形原因:各种广义荷载。)变形原因:各种广义荷载。(3)结构类型:各

9、种杆件结构。)结构类型:各种杆件结构。(4)材料种类:各种变形固体材料。)材料种类:各种变形固体材料。1)适于小变形,可用叠加原理。适于小变形,可用叠加原理。2.位移计算公式的普遍性普遍性表现 4、当杆件同时承受轴力与横向力作用时,不考虑由于杆弯曲所引起的杆端轴力对弯矩及弯曲变形的影响。满足以上要求的体系为“线变形体系”。因位移与荷载为线形关系,故求位移时可用叠加原理。PPBA计算位移的有关假定3、结构各部分之间为理想联结,不计摩擦阻力。2、小变形假设。变形前后荷载作用位置不变。1、结构材料服从“虎克定律”,即应力、应变成线形关系。第6章183.虚拟状态的设置 在应用单位荷载法计算时,应据所求

10、位移不同,设置相应的虚拟力状态。例如:A求求AHAH实际状态虚拟状态A1A求求 A A1虚拟状态AA虚拟状态虚拟状态B求求ABAB11B求求 ABAB1163计算结构位移的虚力原理 求哪个方向的位移就在要求位移的方向上施加相应的单位力。第6章(g)求AB1/lB1/lABACP=1(a)求BHACP=1B(b)求CVBACM=1(c)求CAP=1B(d)求ABP=1AP=1B(e)求ABP=1(f)求CM=1C施加单位荷载,求角位移、相对角位移第6章求B求C求C求AB-AC求AB 求哪个方向的位移就在要求位移的方向上施加相应的单位力。214、静定结构在荷载作用下的位移计算 当结构只受到荷载作用

11、时,求K点沿指定方向的位移KP,此时没有支座位移,故式(33)为PkpkPkkpdMdvQduN式中:kkkM、Q、N 为虚拟状态中微段上的内力;dP、duP、dvP为实际状态中微段上的变形。由材料力学知 (a)dP=EIdsMPduP=EAdsNPdvP=GAdskQP将以上诸式代入式(a a)得GAdsQQkEAdsNNEIdsMMpkPkpkkp(34)63计算结构位移的虚力原理2263计算结构位移的虚力原理GAdsQQkEAdsNNEIdsMMpkPkpkkp注:注:(1)符号说明)符号说明 (2)正负号)正负号k-为截面形状系数为截面形状系数1.29101AA(34)231.梁和刚架

12、梁和刚架2.桁架桁架EAlNNdsEANNEAdsNNPKPkPkkp3.组合结构组合结构KP=EIdsMMPkEAlNNPk在实际计算时,根据结构的具体情况,式(34)可以简化:63计算结构位移的虚力原理EIdsMMpkkp4.拱结构拱结构KP=EAdsNNEIdsMMPkpk24例 6-1 求图示刚架A点 的 竖 向位移Ay。E A、E I为常数。ABCqL LLAABC1解:1.选择虚拟状态xx选取坐标如图。则各杆弯矩方程为:AB段:xMBC段:LM2.实际状态中各杆弯矩方程为AB段:BC段:MP=MP=xx22qx22qL3.代入公式(34)得Ay=EIqL854,()EIdsMMP=

13、l0(-x)(-2qx2)EIdx+l0(-L)(-2qL2)EIdx63计算结构位移的虚力原理2563计算结构位移的虚力原理例 3 求图示桁架C点的竖向位移CP。图中杆旁数值为杆件的截面积,并设各杆E104kN/cm2。10kN5kN10kN2m1m2m1m8cm28cm28cm28cm24cm24cm24cm2ACBDEPk=1ACBDE杆件l(cm)A(cm2)Nk(kN)NP(kN)NkNPl(kN.cm)NkNPl/A(kN.cm-1)CDCEADBEABDEAE 2002242002242001002248888444-2.002.24-2.002.24-1.000.000.00-

14、30.0022.36-30.0027.95-12.500.00-5.5912000112191200014024 2500 0.00 0.001500140215001735 625 0.00 0.00)32cm(01.AlNNEEAlNNdsPKPKCP 例题3 试求图示半径为R的圆弧形曲梁B点的竖向位移BV。梁的抗弯刚度EI为常数。sinPRMP sinRMK 第6章解:(1)在B点加一单位力(右图),写出单位力作用下的弯矩表达式(2)写出单位力作用下的弯矩表达式(左图)(3)将MK、MP代入求位移公式dsEIMMPKBP)(4EIPRdsinEIPR3202320)(Rd)(PRsin(

15、RsinEI1第6章 练习题:试求图示连续梁C点的竖向位移CV和A截面的转角A ,截面抗弯模量为EI。PCBAl/2l/2答案:)(483EIplcv)(162EIplACBAl/2l/2M答案:)(162EIMlcv)(3EIMlA(1)(2)第6章2964 图 乘 法当结构符合下述条件时:(1)杆轴为直线;(2)EI=常数;(3)两个弯矩图中至少有一个是直线图形。上述 积分可以得到简化。MP图图xy面积面积 设两个弯矩图中,M图为一段直线,MP图为任意形状:ABOABMPxMtgdxEIsMMPdd=MPdxx图M1.图乘公式:计算梁和刚架在荷载作用下的位移时,要计算积分EIsMMpkkp

16、dEIxMxPdtgxxMEIPdtgdtgxEIxEIctgEIyc形心形心CxCyCyC=xCtg 如果结构上各杆段均可图乘,则:EIycEIsMMpkkpd此时由式(33)可得:图示简支刚架内侧温度升高25C,外侧温度升高5C,各截面为 矩形,h=0.t1=求哪个方向的位移就在要求位移的方向上施加相应的单位力。2、温度变化作用下静定结构位移计算公式66 静定结构温度变化时的位移计算简单图形的面积公式和形心位置2)形式上是虚功方程,实质是几何方程。例:35 图示刚架施工时温度为20,求冬季外侧温度62 变形体的虚功原理由材料力学知(1)为了校核结构的刚度。由于变形将导致结构各结点位置的移动

17、,于是产生位移。4、图乘有正负之分:弯矩图在杆轴线同侧时,取正号;(2)写出单位力作用下的弯矩表达式(左图)62 变形体的虚功原理上述 积分可以得到简化。例 62 求下图所示刚架C、D两点间距离的改变。30图乘法的注意事项 (1)必须符合上述三个前提条件;(2)竖标yC只能取自直线图形;(3)与yC在杆件同侧乘积取正号,异侧取负号。2.简单图形的面积公式和形心位置Lh2L/3L/32hLLhab(L+a)/3(L+b)/32hL形心形心64 图 乘 法31Lh二次抛物线顶点L/232hL二次抛物线Lh3L/4L/43L/85L/8 1 21=2/3(hL)2=1/3(hL)顶点64 图 乘 法

18、三、使用乘法时应注意的问题 1、yo必须取自直线图形MK图MP图Pyo01yEIP 第6章MK图MP图1y1)(12211yyEI 2、当MK为折线图形时,必须分段计算;2y2第6章MK图MP图1y122211111yEIyEI 3、当杆件为变截面时亦应分段计算;2y21EI1EI2EI2EI第6章4、图乘有正负之分:弯矩图在杆轴线同侧时,取正号;异侧时,取负号。MK图MP图Pyo01yEIP Pyo01yEIP 第6章计算温度改变引起的结构位移时,不能忽略轴向变形对结构位移的影响!64 图 乘 法(1)在B点加一单位力(右图),写出单位力作用下的弯矩表达式(3)结构类型:各种杆件结构。例 6

19、3 求图示刚架A点的竖向位移Ay。ya=2/3c+1/3dN2、Q2、M2、P2、12(4)两截面间的相对角位移62 变形体的虚功原理例题 试求左图所示刚架C点的竖向位移AV和转角C。计算温度改变引起的结构位移时,不能忽略轴向变形对结构位移的影响!作3-3截面,研究其左半部:结构是由可变形的材料做成的,在外部因素作用下,结构将产生变形和位移。yb=2/3d1/3c由0增加至MK图MP图1y1221111yEIyEI 2y25、若两个图形均为直线图形时,则面积、纵标可任意分别取自两图形;第6章MK图MP图 )()(1432211yyyyEI 6、图乘时,可将弯矩图分解为简单图形,按叠加法分别图乘

20、。y1y21y3y42abcdl)22(61)323(2)332(21bcadcdaclEIdcbldcalEI 第6章MK图MP图6、图乘时,可将弯矩图分解为简单图形,按叠加法分别图乘。acdl )2()832()332()2(1dcqlldcalEI82qla82qll第6章393.把复杂图形化为简单图形 当图形的面积和形心位置不便确定时,将它分解成简单图形,之后分别与另一图形相乘,然后把所得结果叠加。例如:图MMP图abcd dLdxMMP )22(1baybLyaLEIya=2/3c+1/3dyb=1/3c+2/3d图MMP图abcdyayb此时ya=2/3c1/3dyb=2/3d1/

21、3cybya64 图 乘 法dxMMMPbPa)(bbaayyabdxMMEIP1 dxMMdxMMPbPa40 当yC所属图形是由若干段直线组成时,或各杆段的截面不相等时,均应分段相乘,然后叠加。123y1y2y3123y1y2y3=EI1(1y1+2y2+3y3)EI1EI2EI3=333222111EIyEIyEIy64 图 乘 法41 例 62 求下图所示刚架C、D两点间距离的改变。设EI=常数。ABCDLhq解:1.作实际状态的MP图。MP图图M2.设置虚拟状态并作图M。11hhyC=h3.图乘计算()CD=EIyC=EI1(328qL2L)h=12EIqhL2形心8qL264 图

22、乘 法42 例 63 求图示刚架A点的竖向位移Ay。ABCDEIEI2EIPLLL/2解:1.作MP图、图MP2PL2PLPLMP图图M1L;2.图乘计算。Ay=()2PL4PLEIyC=EI1(2L L2PL(L 4=16EIPL2)-2EI123L)PL64 图 乘 法43 例 64 求图示外伸梁C点的竖向位移Cy。EI=常数。qABCL2L8qL2M图11y2y3解:1.作MP图2.作M图3.图乘计算y1=8L3y2=3Ly3=4LCy=)(EI128qLEIy4Cy18qL2MP图232L64 图 乘 法解1(1)绘出荷载作用下的弯矩图(Mp图)(2)为求C点的竖向位移,在C处加一单位

23、力,绘出(Mk1图)(Mp图)(Mk1图))(0924.013860 mEI lPKCVEIdsEIMM)300()66()26()45632()33002()266(1 例题 试求左图所示刚架C点的竖向位移AV和转角C。各杆材料相同,截面抗弯模量为:25105.1mKNEI 第6章解2:(1)绘出荷载作用下的弯矩图(Mp图)(2)为求C点的转角,在C处加一单位力偶,绘出(Mk2图)(Mp图)(Mk2图)).(0168.02520)1()6300()1()45632()1()26300(1 radEIEIC 例题 试求左图所示刚架C点的竖向位移AV和转角C。各杆材料相同,截面抗弯模量为:251

24、05.1mKNEI 第6章46ABCDMP(kN.m)64 图 乘 法例3 求图示刚架C截面的角位移 c;点B的水平线位移BH;点D的竖向线位移DV。ABCD2m2m3m10kN10kN/m40kNEI3EI305560解:1、作MP图2、求 c;图作1MABC图1MM1=119EI140)43412)(532()214)(6021()314)(3021(3EI1c()47EIEIEI3190 )323)(33021(1 )413432)(3532()214)(6021()324)(3021(-31HB64 图 乘 法ABCDMP(kN.m)3055603、求BH;图作2MABC图2MP2=1

25、33()ABCD2m2m3m10kN10kN/m40kNEI3EI4864 图 乘 法ABCDMP(kN.m)3055604、求DV;图作3MABCD2m2m3m10kN10kN/m40kNEI3EIABC图3MP2=11EIEI9170 2)212)(532(2)322)(6021()214)(121(-31VD()4965 静定结构温度变化时的位移计算1、静定结构发生温度变化时的反应特点 静定结构没有多余约束,在温度变化时不产生反力和内力;由于材料热胀冷缩,结构将产生变形和位移。2、温度变化作用下静定结构位移计算公式 设图示结构外侧温度升高 t1,内侧温度升高 t2,求K点的竖向位移Kt。

26、t t1 1t t2 2KKKtKPK=1实虚(1)温度变化规律的假定沿截面高度线性变化;材料的线胀系数为单位长度在温度改变1时伸长(或缩短)值。50dxt1t2t2dxt1dxdtt t1 1t t2 2KKKtKPK=1实虚(2)微段的变形dxdx 温度改变只引起材料纤维的伸长或者缩短,因此:微段杆轴线处的伸长,杆件截面无剪应变,0;dd0 xtut22;21021211212210ttthhhthhthhhhthhtt时,微段两端截面的相对角位移,;ddddd1212xhtxhtthxtxtthh1h2dxkMkNkMkNkQkQ65 静定结构温度变化时的位移计算t051Kt此时由式(3

27、3)可得:t t1 1t t2 2KKKtdsdxht1t2t2dxt1dxdtKdsPK=1dx实虚MMNNKtdxhtMdxtNk0k)()(65 静定结构温度变化时的位移计算(3)位移计算公式0;,xtutdd00 ddC,xhttcRdMdvQduNjkjkjkKj(33)当t0、t和截面高度h沿杆长方向为常量:dxMhtdxNtkk0)()(MNhtt)()(05265 静定结构温度变化时的位移计算KtMNhtt)()(0正负号确定:当温度改变状态的变形与虚力状态的变形方向一致 时取正号,相反时取负号。计算温度改变引起的结构位移时,不能忽略轴向变形对结构位移的影响!桁架在温度变化时的

28、位移计算公式为Kt=lNtk桁架因制造误差引起的位移计算与上式类似式中l为制造误差。Ke=lNk(312)53 例:35 图示刚架施工时温度为20,求冬季外侧温度为10,内侧温度为0时A点的竖向位移 Ay。已知L=4m,=105,各杆均为矩形截面,高度。LLt1t2实实解:外侧温度变化绘MN、图,AA1虚虚1代入式(312),并注意正负号(判断),L图M图NAyMNhtt0)L2L(h10L)1()25(22)(mm5m005.0hL15L252可得 t1=1020=30,内侧温度变 化 t2=020=20。t0=(t1+t2)/2=25,t=t2t1=1065 静定结构温度变化时的位移计算5

29、466 静定结构支座移动时的位移计算 对于静定结构,支座移动并不引起内力,结构材料也不产生应变。此时,静定结构支座移动时的位移是刚体位移。计算公式化简为Kc=cR 例:图示三铰刚架右边支座的竖向位移By=0.06m水平位移Bx=0.04m,已知 L=12m,h=8m。求A。hL/2L/2BxBxByBy实ABC解:虚拟状态如图。ABC1BVLVB1BHhHB21 由式得AhLBxBy2h.204012060=0.0075rad 虚例题1 图示简支刚架内侧温度升高25C,外侧温度升高5C,各截面为 矩形,h=0.5m,线膨胀系数10-5 ,试求梁中点的竖向位移 DV。+25C+5C解:作出MK、

30、NK图后,依求位移公式计算位移:KKMNthtt )()(0)0.001275m(236210.520101.072115101.055第6章MK图3/2NK图1/2例题2 三铰刚架,支座B发生如图所示的位移:a=5cm,b=3cm,l=6m,h=5m。求由此而引起的左支座处杆端截面的转角A。解:在要求位移方向上加单位力(图2),求出支座反力后依求位移公式计算位移:(图1)(图2)aKACR)05.0101()03.061().(01.0 rad第6章5767 线弹性结构的互等定理(1)功的互等定理 第一状态N1、Q1、M1、P1、2112P12112P212 第二状态N2、Q2、M2、P2、

31、12据虚功原理有 T21=W21:GAdsQQEAdsNNEIdsMMP212121121或T12=T21故(315)第一状态的外力在第二状态的位移上所作的虚功,等于第二状态的外力在第一状态的位移上所作的虚功。GAdsQQEAdsNNEIdsMMP121212212T12=W12:证明如下:122121PP58(2)位移互等定理12P1=1 2112P2=1 12据功的互等定理 P112=P221(影响系数)即12=21(316)P1=1AABBCCAM=1fCA=fc又如:第二个单位力所引起的第一个单位力作用点沿其方向的位移,等于第一个单位力所引起的第二个单位力作用点沿其方向的位移。有67

32、线弹性结构的互等定理59(3)反力互等定理1=12=1据功的互等定理r121=r212即r12=r21(4)反力位移互等定理 支座1发生单位位移所引起的支座2的反力,等于支座2发生单位位移所引起的支座1的反力。12r2112r12 单位力所引起的某支座反力,等于该支座发生单位位移时所引起的单位力作用点沿其方向的位移。(略)67 线弹性结构的互等定理一、试绘制图示结构内力图。P/2P/2Paaa30kN30kN3kN/m5m5m10m10m10maa/2a/2Ppamma2a2aa二、试绘制图示结构弯矩图。2KN16kN/m2kN/m8kN2m2m2m2m第6章P/2P/2PaaaPa/2Pa/

33、2Pa/2Pa/2P/2P/2P/2P/2P/2P/2M图Q图N图aa/2a/2PpaP2P2P2pa1.5pa0.5pa2PP2PM图Q图N图2pa第6章a/2a/2a/22KN16kN/m2kN/m8kNa/220361212613kN5kN6kN26513135M(kN.m)Q(kN)N(kN)30kN30kN3kN/m5m5m10m10m10m4507515037.5M(kN.m)7.5kN37.5kNmma2a2aa1.5m3mmM图0.5m/a1.5m/a2m/a3m第6章三、试求图示桁架指定截面之内力。1234PPaa2aaPaaaaa2a123PP1234aaaaaa第6章AB

34、CDPP0E11 0CM(1)作1-1截面,研究其左半部:压压)(221PN 0KM拉)拉)(44PN (2)研究结点D:0Y拉拉)(233PN (3)研究结点E:0EDF)(42压压PN K第6章PP1234aaaaaaABCPP033 0Y(1)作1-1截面,研究其右半部:拉拉)(2PN 0BM拉拉)(54PN (3)研究结点C:0Y压压)(5PNDC 1122Dn00000 0nF(2)作2-2截面,研究其右半部:03 N作3-3截面,研究其左半部:0Y拉拉)(221PN 第6章1234PPaa2aa(2)作1-1截面,研究其右半部:拉拉)(423PN 0FM(1)研究结点A:0Y拉拉)(423PNAC 0X拉拉)(41PNAE(3)研究结点C:0X拉拉)(222PN (4)研究结点G:0X拉)拉)(211PN 第6章Paaaaa2a12311P3P/43P/4ACDGFEB四、试求图示结构A点的竖向位移。qaBAEI五、试求图示结构B点的水平位移。qaaaa)(2454 EIqaAV22qa82qaa图图PM图图KMP=1)(3284EIqaBH24qaa2a22qa图图KM图图PMP=1EIEIEIAB第6章感谢观看感谢观看

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(静定结构位移计算授课用-课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|