1、,三、其他未定式,二、,型未定式,一、,型未定式,第二节,机动 目录 上页 下页 返回 结束,洛必达法则,第三章,微分中值定理,函数的性态,导数的性态,函数之商的极限,导数之商的极限,转化,( 或 型),本节研究:,洛必达法则,洛必达 目录 上页 下页 返回 结束,一、,存在 (或为 ),定理 1.,型未定式,(洛必达法则),机动 目录 上页 下页 返回 结束,( 在 x , a 之间),证:,无妨假设,在指出的邻域内任取,则,在以 x, a 为端点的区间上满足柯,故,定理条件:,西定理条件,机动 目录 上页 下页 返回 结束,存在 (或为 ),推论1.,定理 1 中,换为,之一,推论 2.,
2、若,理1条件,则,条件 2) 作相应的修改 , 定理 1 仍然成立.,洛必达法则,定理1 目录 上页 下页 返回 结束,例1. 求,解:,原式,注意: 不是未定式不能用洛必达法则 !,机动 目录 上页 下页 返回 结束,例2. 求,解:,原式,思考: 如何求,( n 为正整数) ?,机动 目录 上页 下页 返回 结束,二、,型未定式,存在 (或为),定理 2.,证:,仅就极限,存在的情形加以证明 .,(洛必达法则),机动 目录 上页 下页 返回 结束,1),的情形,从而,机动 目录 上页 下页 返回 结束,2),的情形.,取常数,可用 1) 中结论,机动 目录 上页 下页 返回 结束,3),时
3、, 结论仍然成立. ( 证明略 ),说明: 定理中,换为,之一,条件 2) 作相应的修改 , 定理仍然成立.,定理2 目录 上页 下页 返回 结束,例3. 求,解:,原式,例4. 求,解: (1) n 为正整数的情形.,原式,机动 目录 上页 下页 返回 结束,例4. 求,(2) n 不为正整数的情形.,从而,由(1),用夹逼准则,存在正整数 k , 使当 x 1 时,机动 目录 上页 下页 返回 结束,例3.,例4.,说明:,1) 例3 , 例4 表明,时,后者比前者趋于,更快 .,例如,而,用洛必达法则,2) 在满足定理条件的某些情况下洛必达法则不能解决 计算问题 .,机动 目录 上页 下
4、页 返回 结束,3) 若,例如,极限不存在,机动 目录 上页 下页 返回 结束,三、其他未定式:,解决方法:,通分,取倒数,取对数,例5. 求,解: 原式,机动 目录 上页 下页 返回 结束,解: 原式,例6. 求,机动 目录 上页 下页 返回 结束,通分,取倒数,取对数,例7. 求,解:,利用 例5,例5 目录 上页 下页 返回 结束,通分,取倒数,取对数,例8. 求,解:,注意到,原式,机动 目录 上页 下页 返回 结束,例9. 求,分析: 为用洛必达法则 , 必须改求,法1 用洛必达法则,但对本题用此法计算很繁 !,法2,原式,例3 目录 上页 下页 返回 结束,内容小结,洛必达法则,机
5、动 目录 上页 下页 返回 结束,思考与练习,1. 设,是未定式极限 , 如果,不存在 , 是否,的极限也不存在 ?,举例说明 .,极限,说明 目录 上页 下页 返回 结束,原式,分析:,分析:,3.,原式,机动 目录 上页 下页 返回 结束,则,4. 求,解: 令,原式,机动 目录 上页 下页 返回 结束,作业,P137 1 (6),(7),(9),(12),(13),(16), 4,第三节 目录 上页 下页 返回 结束,洛必达(1661 1704),法国数学家,他著有无穷小分析,(1696),并在该书中提出了求未定式极,限的方法,后人将其命名为“ 洛必达法,的摆线难题 ,以后又解出了伯努利提出的“ 最速降,线 ” 问题 ,在他去世后的1720 年出版了他的关于圆,锥曲线的书 .,则 ”.,他在15岁时就解决了帕斯卡提出,机动 目录 上页 下页 返回 结束,求下列极限 :,解:,备用题,机动 目录 上页 下页 返回 结束,令,则,原式 =,解:,(用洛必达法则),(继续用洛必达法则),机动 目录 上页 下页 返回 结束,解:,原式 =,第三节 目录 上页 下页 返回 结束,