《中国数学史》课件2.ppt

上传人(卖家):晟晟文业 文档编号:4319786 上传时间:2022-11-29 格式:PPT 页数:41 大小:838KB
下载 相关 举报
《中国数学史》课件2.ppt_第1页
第1页 / 共41页
《中国数学史》课件2.ppt_第2页
第2页 / 共41页
《中国数学史》课件2.ppt_第3页
第3页 / 共41页
《中国数学史》课件2.ppt_第4页
第4页 / 共41页
《中国数学史》课件2.ppt_第5页
第5页 / 共41页
点击查看更多>>
资源描述

1、亚历山大后期数学 中世纪的中国数学数本2003级教学目标:了解亚历山大后期数学及九章算术周髀算经数学内容,理解刘徽、祖冲之及祖恒重要数学成就的数学思想和方法,掌握刘徽及祖恒获得球体积公式的“牟合方盖”模型构造及过程,熟练掌握九章算术中的重要数学成就和“出入相补”原理及其运用。教学重点:九章算术及刘徽、祖氏父子数学成就教学难点:球体积公式的证明一、亚历山大后期和希腊数学的衰落 主要代表人物:海伦、托勒玫、丢番图、帕波斯 海伦(公元前1世纪公元1世纪),代表作量度,发现三角形面积公式 S=s(s-a)(s-b)(s-c)1/2 其中a,b,c为三边,s=(a+b+c)/2 托勒玫(约100170年

2、),代表作天文学大成,创立了三角学,并列出了从1/2度到1800每隔半度的圆心角所对的弦的长度,相当于00到900的正弦表。在大成中提出了地心说,后被中世纪基督教尊为教条,文艺复兴时期被哥白尼日心说取代。(一)三角术的创立 为建立定量天文学,以便用来预报天体运行的路线、位置,帮助报时、计算日历和航海,古希腊人创立了一门全新的学科三角术。三角术主要由希帕克斯、梅内劳斯和托勒玫(天文学家)建立。其中希帕克斯作了奠基性工作,梅内劳斯给予发展,托勒玫进行完善、总结并将成果收集在大成中。(二)弦表的制作 在三角术的建立过程中,古希腊人获得了包括今天我们知道的相当于两角和、差的三角公式、半角与倍角等公式。

3、此外,还制成30180每隔0.5度的圆心角所对弦的长度表(相当于正弦函数表),其制作过程和原理介绍如下:1 1、问题、问题 已知弧AB所对圆心角2 求弦AB 由今天的知识知由今天的知识知ACACAOAOsinsin当时,托勒玫将圆周分为当时,托勒玫将圆周分为360360份,直径分为份,直径分为120120份,份,sin sin ACACAOAO(1/2)AB(1/2)AB60601/1201/120(2 2 所对弦)所对弦)OABC2 2、计算特殊角的弦、计算特殊角的弦 90的弦 AB=84 5110OABABCOEFE为CO中点,BE=EFFO、BF分别为圆内接正十、五边形的一边EB2=BO

4、2+EO2=602+302=4500EB=67 45536的弦FO=EF-EO=EB-EO=37 45572的弦BF=70 3233 3、补弧定理、补弧定理 4 4、托勒玫定理:圆内接四边形两对角线长、托勒玫定理:圆内接四边形两对角线长的乘积等于两对边乘积之和。的乘积等于两对边乘积之和。ABC已知弧BC的弦为BC,圆心角为 ,则(的弦)2+(1800 )的弦2=AB2相当于sin2 +cos2 =15、差弧定理 当圆内接四边形一边为直径时,已知AB,AC,则可求出BCABCD由托勒玫定理有ACBD=ABCD+BCAD由补弧定理,AB已知,由BD可求;同理可求CD,ADO为直径,故BC可求结论:

5、ADC和 ADB所对弦已知,差角 BDC所对弦可求,即两角差的三角函数公式6、托还求出相当于今天的半角、倍角及求和公式,根据这些定理制作出了弦表。丢番图(公元246330年),代数学的鼻祖。墓志铭:童年占一生的1/6,此后过了一生的1/12开始长胡子,再过一生的1/7后结婚,婚后5年生了个孩子,孩子活到父亲的一半的年龄,孩子死后4年父亲也去世,问丢番图活了多少岁?主要代表作算术,以解不定方程而著称。创用了一套缩写符号。著名问题:将一个已知的平方数分为两个平方数。(引出了费马大定理:xn+yn=zn 没有正整数解)重要贡献:创用一套缩写符号,使用了特殊的记号表示未知数 。0MKrr表示方程 x3

6、5x2+8x 1=0不足:解题方法上缺乏一般性。其他数学家:尼马可修斯(公元100年左右),算术入门,数论著作,采用“筛法”寻找质数。梅内劳斯球面论希帕蒂娅第一位杰出的女数学家。被基督教暴徒残杀。帕波斯(约公元300350年),数学评注家,著作数学汇编(是希腊数学的安魂曲)二 周髀算经(一)古代背景、背景:我国在公元前两千多年前(大禹时期)进入奴隶社会,于公元前400多年左右(战国时期)进入封建社会,以后有几段太平盛世,形成超稳定社会结构。生产力发展较快,数学研究也处于较高水平。在萌芽期,水平与古埃及、巴比伦相当,春秋战国至魏晋南北朝时期数学可与古希腊媲美,中世纪宋元时期则发展为一枝独秀。、古

7、算特点:讲求实用:为天文、经济、军事和文化需要而产生并发展起来的。机械化算法体系:计算为主,独创计算工具“算筹”,促进了计算技术的发展,成为当时世界最先进的数学成就。构造性和可计算性。著作形式。3、理论几何萌芽算经十书汉唐时期的数学 代表作。周髀算经、九章算术、海岛算经、孙子算经、张丘建算经、缉古算经、数术记遗、五曹算经、五经算术、夏侯阳算经(二)周髀算经中国古代数学著作中最早的一部。以盖天说为中心的天文学著作,有许多数学知识。如以文字叙述了勾股算法,还有许多属于分数乘、除法的实际问题,演算水平相当高。1、盖天说西汉时期关于宇宙结构的学说。给出四分历法(用润月调节四时气候的阴历历法),一个回归

8、年为365又1/4天。2、分数运算3、勾股定理特例(西周初公元前世纪):32+42=52一般形式(公元前67世纪):勾2+股2=弦2最早的证明公元世纪赵爽(三国时期)在注周髀算经时作“弦图”证明,运用了“出入相补原理”(割补法)进行证明 九章算术集中了过去和当时的几乎全部数学知识,以应用问题解法集成的题例编成,成书于公元前1世纪前,是先秦至西汉中叶期间编篡。共246个问题,分九章。(一)方田章 讲平面图形的面积和边界的计算,还涉及分数及其算法。三、九章算术方田术曰:广从步数相乘得积步(“广”即“长”,“从”即“宽”)1、面积计算如图,CD为高,取AD、BD中点E、F,则面积,注:证明可推广到一

9、般三角形 圭田术曰:半广以乘正从刘徽注:半广者,以盈补虚得圭田也ABGCHEFD邪田术曰:并两邪以半者,以乘正从者广 刘徽注:并而半之者,以盈补虚也如图,求直角梯形的面积圆田术曰:半周乘半径者也 刘徽注:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失也见P792、分数理论实如法而一,不满法者,以法命之约分术曰:可半者半之,不可半者,由量分母之数,以少减多,更相减损,求其等也,以等数约之。齐同术 刘徽注:凡母互乘谓之齐,群母相乘谓之同,母同则子通(二)粟米章 讲各种谷物之间的换算,主要用“今有术”,即按今有数据比例进行计算。率:交换中等价物的数量粟米之法:粟米五十,粝米三十,橰米

10、二十七率即一组相关变量x1,xn;x1xn成立线性关系:xi=kxi则称每一个xi为一个率今有术:所求数(所有数所求率)/所有率例:(本章第一问)今有粟一斗,欲为粝,问得几何?答曰:为粝米六升术曰:以所有数乘所求率为实,以所有率而法,实如法而一。注:“今有术”变形:所求数/所求率所有数/所有率即四项比例算法,此法传到欧洲称:“黄金算法”。所有术是解决比例问题的基础理论,刘徽称“此都术也”(三)衰分章 衰(cui)即有递减之意。衰分是按一定比率分配的意思。(四)少广章 截多补少之意,本章讲由田亩的面积、长方体的体积或球的体积出发,求田亩的边长、长方体的边长或球径长。因此有世界上最早的多位数开方的

11、法则。(五)商功章:商即商量、度量之意,商功就是度量土土石方等的方法。本章讲多种体积算法。(六)均输章:讲合理运输的数学问题,还有行程、抽税、按等级分物等问题,内容较复杂,涉及比例、复比、等差级数等知识。(七)盈不足章:讲用过剩(盈)与不足近似值逐步逼近求解方程的根,称为“盈不足术”,又称试位法或双设法。中世纪传入欧洲后称为“契丹算法”,现称弦位法。(八)方程章:讲线性方程组的消元法,同时还引进了负数,两者长期在世界上是首屈一指的。(九)句股章:即勾股,讨论用勾股定理解应用问题。三国以前,我国数学要籍,首推九章算术。刘徽在数学上的贡献,主要在其九章算术注一书。隋书卷16律历上载:“魏陈留王景元

12、四年刘徽注九章”。是知九章算术注完成于景元四年(263年)。隋书卷34经籍志三有九章算术十卷、九章重差图一卷,均注明系刘徽撰。后九章重差图失传,唐人将九章算术注内有关数学用于测量的重差一卷取出,独成一书,因其中第一个问题系测量海岛,故改名为海岛算经。刘徽这两个著作是我国数学史上宝贵的文献,即在世界数学史上也有一定的地位。今述其主要贡献如下:四、刘徽的主要数学成就刘徽九章注和九章算术与古希腊的几何原本相辉映,各具特色。主要成就:1、割圆术:圆周率精确到二位小数即3.14,称为“徽率”,值是否正确,直接关系到天文历法、度量衡、水利工程和土木建筑等方面的应用,所以精确计算值,是数学上的一个重要任务。

13、公元前三世纪希腊数学家阿基米得曾提出圆周长于内接圆内多边形而小于圆外切多边形周长,算出了的数值。但阿基米得是用的归谬法,他避开了无穷小和极限,而刘徽应用了极限的概念,且只用圆内接正多边形的面积计算,而省去了计算圆外切正多边形的面积,从而收到了事半功倍之效。2、体积理论:出入相补原理 (1)阳马术:运用极限法 (2)球体积:创立了新的图形“牟合方盖”(正方体内两个圆柱垂直相交部分)阳马术:运用极限法即求锥体的体积abcV锥体=1/3abc阳马鳖渐堵1个长方体2个小渐堵2个小阳马1个长方体2个小渐堵2个小鳖阳马鳖1个长方体2个小渐堵2个小阳马2个小渐堵2个小鳖1个长方体2个小渐堵2个小渐堵大渐堵1

14、个长方体体积+4个小渐堵体积=3/4大渐堵的体积2个小阳马+2个小鳖=1/4大渐堵的体积阳马体积记为Y,鳖体积记为B 小阳马体积记为Y1,小鳖体积记为B1 则Y=Y1+2Y1 ,B=B1+2 B1 1个长方体2个小渐堵2个小渐堵1个长方体体积+4个小渐堵体积=3/4大渐堵的体积2个小阳马+2个小鳖=1/4大渐堵的体积体积记为Y1体积记为B1继续剖分小阳马和小鳖,在第n次剖分后有Y=2i-1Yi+2nYn ,B=2i-1 Bi+2n Bn 2i-1Yi:2i-1 Bi=2:1 设原渐堵体积为1 则Un=2nYn+2n Bn=2n-12(Yn+Bn)=2 n-1(1/4)(1/8)n-1=1/4n

15、 0继续剖分小阳马和小鳖,在第n次剖分后有Y=2i-1Yi+2nYn ,B=2i-1 Bi+2n BnY:B=2i-1Yi:2i-1 Bi=2:1阳马鳖关于体积计算的刘徽定理一般地说,柱体或多面体的体积计算较比容易解决,而圆锥、圆台之类的体积就难以求得。刘徽经过苦心思索,终于找到了一条途径,他分别做圆锥的外切正方锥和圆台的外切正方台,结果发现:“求圆亭(圆台)之积,亦犹方幂中求圆幂,圆面积与其外切正方形的面积之比为4,由此他推得:圆台(锥)的体积与其外切正方台(锥)的体积之比,也是4。五、祖冲之与祖暅祖冲之,字文远(公元429500年)。祖冲之的主要成就在数学、天文历法和机械制造三个领域。此外

16、祖冲之精通音律,擅长下棋,还写有小说述异记。祖冲之著述很多,但大多都已失传。研究过易经、老子、庄子等书。祖冲之是一位少有的博学多才的人物。在天文历法方面,认为国家颁行的何承天的元嘉历不够精确,另制大明历 在机械制造方面,受命制造指南车,车成后测试,“其制甚精,百屈于回,未尝移废”,意即效果良好,还制造过水碓磨、千里船、计时器等器械。在数学方面,著作早已失传,其成就列入正史可证明。1、圆周率精确到3.1415926 3.1415927 密率355/113,约率22/7 2、球体积的推导:与其子祖暅一起利用“祖氏原理”求出牟合方盖体积。祖氏原理:幂势既同,则积不容异注:在西方,直到1635年意大利数学家卡瓦列利才有了与祖氏父子类似的思想,比祖氏父子已晚了一千一百多年,比刘徽更迟了一千三百多年。1/8牟合方盖图1图2图3图4图1图2图3图4图5ABCDSQRPhrTASQP+CTQR+BSQT=h2=倒锥体的横截面S的面积图1图5ABCDSQRPhrThS1/8牟合方盖的体积=1/8正方体的体积倒锥体的体积 =r3-1/3r3=2/3r3V球:V牟合方盖=V球=思考:利用下图求球体积感谢下感谢下载载

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(《中国数学史》课件2.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|