1、12.1 幂的运算第12章 整式的乘除导入新课讲授新课当堂练习课堂小结3.积的乘方学习目标1.理解并掌握积的乘方法则及其应用.(重点)2.会运用积的乘方的运算法则进行计算.(难点)导入新课导入新课问题引入 1.计算:(1)10102 103=_;(;(2)(x5)2=_.x101062.(1)同底数幂的乘法 :aman=(m,n都是正整数).am+n(2)幂的乘方:(am)n=(m,n都是正整数).amn底数不变指数相乘指数相加同底数幂的乘法幂的乘方其中m ,n都是正整数(am)n=amnaman=am+n想一想:同底数幂的乘法法则与幂的乘方法则有什么相同点和不同点?讲授新课讲授新课积的乘方运
2、算一思考下面两道题:2();ab3().ab(1)(2)我们可以根据乘方的意义及乘法交换律、结合律进行运算.这两道题有什么特点?底数为两个因式相乘,积的形式.这种形式为积的乘方我们学过的幂的乘方的运算性质适用吗?自主探究2()ab()()abab()()aabb22a b同理:(乘方的意义)(乘法交换律、结合律)(同底数幂相乘的法则)3()ab()()()ababab()()aaabbb33a b(ab)n=(ab)(ab)(ab)n个ab=(aa a)(bb b)n个a n个b=anbn.证明:思考问题:积的乘方(ab)n=?猜想结论:因此可得:(ab)n=anbn (n为正整数).(ab)
3、n=anbn (n为正整数)推理验证 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.想一想:三个或三个以上的积的乘方等于什么?知识要点积的乘方法则例1 计算:(1)(2a)3 ;(2)(-5b)3 ;(3)(xy2)2;(4)(-2x3)4.解:(1)原式=(2)原式=(3)原式=(4)原式=8a3;=-125b3;=x2y4;=16x12.23a3(-5)3b3x2(y2)2(-2)4(x3)4典例精析().410124()2 410122解:原式原式逆用幂的乘方的运算性质()810122幂的乘方的运算性质()8821222逆用同底数幂的乘法运算性质()821222逆用积的乘方的
4、运算性质.4 例2 计算:anbn=(ab)n am+n=amanamn=(am)nu作用:使运算更加简便快捷!积的乘方法则的逆用二(1)(ab2)3=ab6 ()(2)(3xy)3=9x3y3 ()(3)(-2a2)2=-4a4 ()(4)-(-ab2)2=a2b4 ()1.判断:2.下列运算正确的是()A.x.x2=x2 B.(xy)2=xy2 C.(x2)3=x6 D.x2+x2=x4C当堂练习当堂练习 (1)(ab)8;(2)(2m)3 ;(3)(-xy)5;(4)(5ab2)3 ;(5)(2102)2 ;(6)(-3103)3.3.计算:解:(1)原式=a8b8;(2)原式=23 m
5、3=8m3;(3)原式=(-x)5 y5=-x5y5;(4)原式=53 a3(b2)3=125 a3 b6;(5)原式=22(102)2=4 104;(6)原式=(-3)3(103)3=-27 109=-2.7 1010.(1)1)2(x3)2x3-(3x3)3+(5x)2x7;(2 2)(3xy2)2+(-4xy3)(-xy);(3)(-2x3)3(x2)2.解:原式=2x6x3-27x9+25x2x7 =2x9-27x9+25x9=0;解:原式=9x2y4+4x2y4 =13x2y4;解:原式=-8x9x4=-8x13.注意:运算顺序是先乘方,再乘除,最后算加减.4.4.计算:5.5.如果(anbmb)3=a9b15,求m,n的值.(an)3(bm)3b3=a9b15,a 3n b 3mb3=a9b15,a 3n b 3m+3=a9b15,3n=9 ,3m+3=15.n=3,m=4.解:(anbmb)3=a9b15,课堂小结课堂小结幂的运算性质性 质 aman=am+n (am)n=amn (ab)n=anbn (m,n都是正整数)反 向运 用am an=am+n、(am)n=amn anbn=(ab)n可使某些计算简捷注 意运用积的乘方法则时要注意:公式中的a,b代表任何代数式;每一个因式都要“乘方”;注意结果的符号、幂指数及其逆向运用(混合运算要注意运算顺序)