14.2.2-完全平方公式-教学课件.ppt

上传人(卖家):晟晟文业 文档编号:4344350 上传时间:2022-12-01 格式:PPT 页数:31 大小:249.54KB
下载 相关 举报
14.2.2-完全平方公式-教学课件.ppt_第1页
第1页 / 共31页
14.2.2-完全平方公式-教学课件.ppt_第2页
第2页 / 共31页
14.2.2-完全平方公式-教学课件.ppt_第3页
第3页 / 共31页
14.2.2-完全平方公式-教学课件.ppt_第4页
第4页 / 共31页
14.2.2-完全平方公式-教学课件.ppt_第5页
第5页 / 共31页
点击查看更多>>
资源描述

1、14学习目标1.理解并掌握完全平方公式的推导过程、结构特点、几何解释.(重点)2.灵活应用完全平方公式进行计算.(难点)导入新课导入新课情境引入一块边长为a米的正方形实验田,直接求:总面积=(a+b)(a+b)间接求:总面积=a2+ab+ab+b2你发现了什么?(a+b)2=a2+2ab+b2讲授新课讲授新课完全平方公式一问题1 计算下列多项式的积,你能发现什么规律?(1)(p+1)2=(p+1)(p+1)=.p2+2p+1(2)(m+2)2=(m+2)(m+2)=.m2+4m+4(3)(p-1)2=(p-1)(p-1)=.p2-2p+1(4)(m-2)2=(m-2)(m-2)=.m2-4m+

2、4问题2 根据你发现的规律,你能写出下列式子的答案吗?(a+b)2=.a2+2ab+b2(a-b)2=.a2-2ab+b2合作探究知识要点完全平方公式(a+b)2=.a2+2ab+b2(a-b)2=.a2-2ab+b2也就是说,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.这两个公式叫做(乘法的)完全平方公式.简记为:“首平方,尾平方,积的2倍放中间”问题3 你能根据下图中的面积说明完全平方公式吗?设大正方形ABCD的面积为S.S=S1+S2+S3+S4=.(a+b)2a2+b2+2abS1S2S3S4几何解释:=+a2ababb2(a+b)2=.a2+2ab+b2

3、和的完全平方公式:几何解释:(a-b)2=.a2-2ab+b2差的完全平方公式:(a+b)2=a2+2ab+b2.(a-b)2=a2-2ab+b2.问题4 观察下面两个完全平方式,比一比,回答下列问题:1.说一说积的次数和项数.2.两个完全平方式的积有相同的项吗?与a,b有 什么关系?3.两个完全平方式的积中不同的是哪一项?与 a,b有什么关系?它的符号与什么有关?u 公式特征:4.公式中的字母a,b可以表示数,单项式和多项式.1.积为二次三项式;2.积中两项为两数的平方和;3.另一项是两数积的2倍,且与两数中间的符号相同.想一想:下面各式的计算是否正确?如果不正确,应当怎样改正?(1)(x+

4、y)2=x2+y2(2)(x-y)2=x2-y2(3)(-x+y)2=x2+2xy+y2(4)(2x+y)2=4x2+2xy+y2(x+y)2=x2+2xy+y2(x-y)2=x2-2xy+y2(-x+y)2=x2 2xy+y2(2x+y)2=4x2+xy+y2典例精析例1 运用完全平方公式计算:解:(4m+n)2=16m2(1)(4m+n)2;(4m)2+2(4m)n+n2+8mn+n2;y2=y2-y+1.4解:=+212-2y12(2)212y 212y 利用完全平方公式计算:(1)(5a)2;(2)(3m4n)2;(3)(3ab)2.针对训练(3)(3ab)29a26abb2.解:(1

5、)(5a)22510aa2;(2)(3m4n)29m224mn16n2;(1)1022;解:1022=(100+2)2=10000+400+4=10404.(2)992.992=(100 1)2=10000-200+1=9801.例2 运用完全平方公式计算:方法总结:运用完全平方公式进行简便计算,要熟记完全平方公式的特征,将原式转化为能利用完全平方公式的形式利用乘法公式计算:(1)98210199;(2)201622016403020152.针对训练(20162015)21.解:(1)原式(1002)2(1001)(1001)1002400410021395;(2)原式201622201620

6、1520152例3 已知xy6,xy8.求:(1)x2y2的值;(2)(x+y)2的值.361620;解:(1)xy6,xy8,(xy)2x2y22xy,x2y2(xy)22xy(2)x2y220,xy8,(x+y)2x2y22xy20164.方法总结:本题要熟练掌握完全平方公式的变式:x2y2(xy)22xy(x+y)22xy,(xy)2(x+y)24xy.1.已知已知x+y=10,xy=24,则则x2+y2=_52变式:变式:已知已知 则则 _,101xx221xx98拓展训练2.如果如果x2+kx+81是运用完全平方式得到的结果,是运用完全平方式得到的结果,则则k=_ 8或-8 变式:变

7、式:如果如果x2+6x+m2是完全平方式,则是完全平方式,则m的值的值是是_3或-33.已知ab=2,(a+b)2=9,则(a-b)2的值为的值为_变式:变式:若题目条件不变,则若题目条件不变,则a-b的值为的值为_11添括号法则二a+(b+c)=a+b+c;a-(b+c)=a-b c.a+b+c=a+(b+c);a b c =a (b+c).去括号把上面两个等式的左右两边反过来,也就添括号:添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号(简记为“负变正不变”).知识要点添括号法则例5 运用乘法公式计算:(1)(x+2y-3)(x-2y+

8、3);(2)(a+b+c)2.原式=x+(2y3)x-(2y-3)解:(1)典例精析(2)原式 =(a+b)+c2 =x2-(2y-3)2=x2-(4y2-12y+9)=x2-4y2+12y-9.=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2.方法总结:第1小题选用平方差公式进行计算,需要分组.分组方法是“符号相同的为一组,符号相反的为另一组”.第2小题要把其中两项看成一个整体,再按照完全平方公式进行计算.计算:(1)(abc)2;(2)(12xy)(12xy)针对训练14x24xyy2.解:(1)原式(ab)c2(ab)2c22(ab)ca22abb2c22a

9、c2bc;(2)原式1(2xy)1(2xy)12(2xy)2当堂练习当堂练习2.下列计算结果为2aba2b2的是()A(ab)2 B(ab)2 C(ab)2 D(ab)21.运用乘法公式计算(a-2)2的结果是()Aa2-4a+4 Ba2-2a+4 Ca2-4 Da2-4a-4 AD3.运用完全平方公式计算:(1)(6a+5b)2=_;(2)(4x-3y)2=_;(3)(2m-1)2=_;(4)(-2m-1)2=_.36a2+60ab+25b216x2-24xy+9y24m2+4m+1 4m2-4m+14.由完全平方公式可知:3223552(35)264,运用这一方法计算:4.32128.64

10、20.6790.6792_ 255.计算(1)(3ab2)(3ab2);(2)(xymn)(xymn)(2)原式(xy)(mn)(xy)(mn)解:(1)原式3a(b2)3a(b2)(3a)2(b2)29a2b24b4.(xy)2(mn)2x22xyy2m22mnn2.6.若a+b=5,ab=-6,求a2+b2,a2-ab+b2.7.已知x+y=8,x-y=4,求xy.解:a2+b2=(a+b)2-2ab=52-2(-6)=37;a2-ab+b2=a2+b2-ab=37-(-6)=43.解:x+y=8,(x+y)2=64,即x2+y2+2xy=64;x-y=4,(x-y)2=16,即x2+y2-2xy=16;由-得 4xy=48xy=12.课堂小结课堂小结完全平方公式法则法则注意1.项数、符号、字母及其指数2.不能直接应用公式进行计算的式子,可能需要先添括号变形成符合公式的要求才行常用结论3.弄清完全平方公式和平方差公式不同(从公式结构特点及结果两方面)a2+b2=(a+b)2-2ab=(a-b)2+2ab;4ab=(a+b)2-(a-b)2.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(14.2.2-完全平方公式-教学课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|