1、19想一想想一想 做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划是非常必要的.应用数学的知识和方法对各种方案进行比较分析,可以帮助我们清楚地认识各种方案,作出合理的选择.提问:你能说说生活中需要选择方案的例子吗?例:(教材问题1)怎样选取上网收费方式?下表给出A,B,C三种上宽带网的收费方式:选取哪种方式能节省上网费?学 习 新 知思考下列问题:(1)“选择哪种方式上网”的依据是什么?(2)方式A,B中,上网费由哪些部分组成的?方式C上网费是多少钱?收费方式月使用费/元包时上网时间/h超时费/(元/min)A30250.05B50500.05C120不限时追问:(
2、1)你能用适当的方法表示出A,B,C三种方式的上网费用吗?(2)设上网时间为x h,上网费用为y元,你能用数学关系式表示y与x的关系吗?方式A:当上网时间不超过25 h时,上网费=30元;当上网时间超过25 h时,上网费=30+超时费=30+0.0560(上网时间-25).方式A:当0 x25时,y1=30;当x25时,y1=30+0.0560(x-25),即y1=3x-45.故方式B:y2=方式C:y3=120(x0).130 025=34525xyxx,;50 050310050 xxx,;解:设上网时间为x h,方式A上网费用为y1元,方式B上网费用为y2元,方式C上网费用为y3元,则
3、y2=y3=120(x0).(1)令y1=y2,即3x-45=50,解方程,得x=31 (2)令y2=y3,即3x-100=120,解方程,得x=73画出函数的图象如下图:结合函数的图象可知:当上网时间不超过31小时40分时,选择方案A最省钱;当上网时间为31小时40分至73小时20分时,选择方案B最省钱;当上网时间超过73小时20分时,选择方案C最省钱.130 025=34525xyxx,;50 050310050;xxx,2.31.3 例:(教材问题2)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师.现有甲、乙两种大客车,它们的
4、载客量和租金如表所示:(1)共需租多少辆汽车?(2)给出最节省费用的租车方案.甲种客车乙种客车载客量(人/辆)4530租金(元/辆)400280(1)租车的方案有几种?(2)如果单独租甲种车需要多少辆?单独租乙种车需要多少辆?(3)如果甲、乙两种车都租,你能确定租车的车辆范围吗?(4)要保证240名师生有车坐,则汽车总数不能小于.要使每辆汽车上至少有1名教师,则汽车总数不能大 于.综合起来可知汽车总数为.有三种由24045=可知单独租甲种车需要6辆.由24030=8可知单独租乙种车需要8辆车.如果甲、乙两种车都租,汽车总数不能小于6辆,不能超过8辆.666153 想一想:设租用x辆甲种客车,你
5、能用含x的代数式表示租车费用y吗?(1)若只租甲种车,则租车费用=甲种客车每辆的费用车的辆数.(2)若租甲、乙两种车,则租车费用y=甲种客车的费用+乙种客车的费用,设租用x辆甲种客车,则租用(6-x)辆乙种客车,故车费y与x的函数关系式为y=400 x+280(6-x)=120 x+1680.思考:为什么不考虑只租用乙种客车呢?思考:你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?(1)若单独租甲种车,需要费用:4006=2400(元),不满足总费用2300元的限额.(2)若租甲、乙两种车,为使240名师生有车坐,x应满足:45x+30(6-x)240,故x4,为使租车费用不超过2
6、300元,x应满足:400 x+280(6-x)2300,故x .由x为正整数,可知x 的取值为4或5,故这时有两种可能.3 16(3)由上述分析可知共有两种方案:方案一:4辆甲种客车,2辆乙种客车,y=1204+1680=2160(元).方案二:5辆甲种客车,1辆乙种客车,y=1205+1680=2280(元).故应选择方案一,它的费用最少,为2160元.思考:确定方案时,除了利用代入求值进行计算外,如何利用一次函数的性质进行说明?解:(1)要保证240名师生有车坐,由甲种客车每辆载客45人可知汽车总数不能小于6;要使每辆汽车上至少有1名教师,有6名教师可知汽车总数不能大于6.综合起来可知汽
7、车总数为6.(2)若单独租甲种车,需要费用:4006=2400(元),不满足总费用2300元的限额.若租甲、乙两种车,设租用x辆甲种客车,则租用(6-x)辆乙种客车,则车费y与 x 的函数关系式为y=400 x+280(6-x)=120 x+1680.由题意可知x应满足:解这个不等式组,得4x x为正整数,x=4或5.综上可知:共有两种方案:方案一:租4辆甲种客车,2辆乙种客车,y=1204+1680=2160(元).方案二:租5辆甲种客车,1辆乙种客车,y=1205+1680=2280(元).故应选择方案一,它的费用最少,为2160元.4530 6240400280 62300.xxxx,3
8、16课堂小结课堂小结1.用一次函数解决实际问题的基本思路:2.本节课渗透的数学思想方法.(建立数学 模型、数形结合、分类讨论)课堂小结课堂小结 3.在选择方案时,往往需要从数学角度进行分析,涉及变量的问题常用到函数.解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型 检测检测反馈反馈1.如图所示,某电信公司提供了A,B两种方案的移动通话费用y(元)与通话时间x(分)之间的关系,则以下说法错误的是()A.若通话时间少于120分,则A方案比B方案便宜20元B.若通话时间超
9、过200分,则B方案比A方案便宜12元C.若通话费用为60元,则B方案比A方案的通话时间长D.若两种方案通话费用相差10元,则通话时间是145分 或185分D 2.暑假老师带领该校“三好学生”去北京旅游,甲旅行社说:“若教师买全票一张,则其余学生可享受半价优惠.”乙旅行社说:“包括教师在内,全部按全票的6折优惠.”若全票为240元:设学生数为x,甲旅行社收费为y1元,乙旅行社收费为y2元,则y1=,y2=.当学生有人时,两个旅行社费用一样.当学生人数时,甲旅行社收费少.解析解析:y1=240+120 x,y2=0.6240(x+1)=144+144x.由y1=y2得240+120 x=144+
10、144x,x=4.由y1y2得240+120 x4.240+120 x144+144x4大于4 档次高度第一档 第二档 第三档 第四档凳高x(cm)37.040.042.045.0桌高y(cm)70.074.878.082.83.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式(不要求写出x的取值范围);(2)小明回家后,测量了家里的写字台和凳子,写字台的
11、高度为77 cm,凳子的高度为43.5 cm,请你判断它们是否配套?说明理由.解:(1)设一次函数的关系式为y=kx+b(k0),将表中数据任取两组,不妨取(37.0,70.0)和(42.0,78.0)代入,得 解得故一次函数的关系式是y=1.6x+10.8.70=3778=42+kbk b.,=1.6=10.8kb.,解:(2)当x=43.5时,y=1.643.5+10.8=80.477故小明家里的写字台和凳子不配套.4.小刚家装修,准备安装照明灯.他和爸爸到市场进行调查,了解到某种优质品牌的一盏40瓦白炽灯的售价为1.5元,一盏8瓦节能灯的售价为22.38元,这两种功率的灯发光效果相当.假
12、定电价为0.45元/度,设照明时间为x(小时),使用一盏白炽灯和一盏节能灯的费用分别为y1(元)和y2(元)耗电量(度)=功率(千瓦时)用电时间(小时),费用=电费+灯的售价.(1)分别求出y1,y2与照明时间x之间的函数表达式;解:(1)根据题意,得y1=0.45 x+1.5,即y1=0.018x+1.5;y2=0.45 x+22.38,即y2=0.0036x+22.38.401000401000(2)你认为选择哪种照明灯合算?解:由y1=y2,得0.018x+1.5=0.0036x+22.38,解得x=1450;由y1y2,得0.018x+1.50.0036x+22.38,解得x1450;由y1y2,得0.018x+1.50.0036x+22.38,解得x1450小时时,使用节能灯省钱.当x=2000时,y1=0.0182000+1.5=37.5(元);当x=6000时,y2=0.00366000+22.38=43.98(元),337.5-43.98=68.52(元).按6000小时计算,使用节能灯省钱,省68.52元.