1、3456789101112131415161718111abcbccaab(4)321110rrabcabccababc19520(6)123413411412112321314142321234011302220111123401130044200041 6rrrrrrrrrr215.解方程:(1)2132322032(1)0323211132323(3)(3)0 xxxrxrxxrrxxxxxxxx 121211111xxx225.解方程:(2)222233331111xabcxabcxabc()()()()()()0ax bx cx ba ca cb23 6 证明:(1)1112222b
2、baababa(a-a-b b)3 3;24252627282930313273334835367373839(5)111222111nnnnaaaaaaaaaa1112221211111nnniiiiiinnnnnaaaaaarrraaaa4022211111111(1)1111010(1)12,3,0001niinnnnnniiiiiiaaaaaaaara raain 416424374445461.4849505152253354455565576.(1)58(2)597.(1)设 ,求3113A5051.AA和和225502252531311001313010100()010AAA25
3、5150252525252531100130103 1010103 10AAA 60(2)设100211,2,.34a=b=abTAA 求求2124183b aT 1009999)(2(8)11243248(8)1243612ab ababa(b a)(b ab a)bTTTTTTTA 618.(1)62(2)639.6465666710.6812.6913.7014.717213321,143,54134101.120AXBCABC其其中中(4)11733411,110523101AB 117334110111105212031012317191225143XA CB7315.7475761
4、7.7718.7819.7920.8021.8122.8223.8324.8425.8526.8627.8728.1005(2)210430888991929394954.9697986.99100(3)1017.10210310410.10510610711.10812.10913.11011111211314.11411511611711816.设有线性方程组设有线性方程组12311210213,00215xxx 问问 取何值时,(取何值时,(1)有唯一解;()有唯一解;(2)无解;()无解;(3)有)有无限多个解,并在有无限多个解时求其通解。无限多个解,并在有无限多个解时求其通解。119
5、17.12018.12112219.12312420.12512621.12722.1281.1302.1313.1324.5.(1)()min(),()1,()1,()()()()2.TTTTTTTR aaR a R aR bbR AR aabbR aaR bb由由于于同同理理故故2(2),(0),(1),()1.Ta bakb kAkbbR A若若线线性性相相关关 则则从从而而故故1336.120.需需要要补补正正1349.13510.13611.123123,a a ab b b设设向向量量组组线线性性无无关关,判判断断向向量量组组的的线线性性相相关关性性。112321233123(2)
6、23,224,;=3baaa baaabaaa123123123123123123(,)(,)221341123221)3,341(,)(,),RR=Rbbbaaabbbaaabbb由由 于于(故故,故故线线 性性 无无 关关。13712.13813914014114214314419.14521.14614714822.14923.15025.15126.15227.15315428.15529.15615731.15832.15937.16038.1113xP 1612.1631643.1654.1666.1671681699.10.17012.17113.17215.17317419.17517617721.17822.17923.18018118225.183184zyxzyxf12122212126.18528.18618718832.18933.190192193194195196197198199200201202203204