1、组合投资PPT课件2022-10-6组合投资21959年,马柯维茨出版了证券组合选择 详细论述了证券组合的基本原理,提出了著名的资产选择理论 为现代证券投资理论奠定了基础2022-10-6组合投资31963年,威廉.夏普提出了资本资产定价模型(capital asset pricing model)论述了资本资产的价格是如何在市场上决定的 使证券投资理论由规范经济学进入了实证经济学范畴 马柯维茨的证券组合研究的是人们应该如何投资 CAPM模型则研究的是如果每个投资者都按马柯维茨的组合投资方式投资的话,证券价格将会发生什么变化 1990年,诺贝尔经济学奖授予了马柯维茨,夏普,和米勒三位经济学家2
2、022-10-6组合投资41976年,史蒂夫.罗斯(Stephen Ross)提出了套利定价理论(arbitrage pricing theory,APT)从另一个角度研究了风险资产的定价问题 放宽了CAPM模型中的假设条件 在一定条件下,可以把传统的CAPM模型视为APT模型的特例2022-10-6组合投资51973年,布莱克(F.Black)和斯科尔斯(M.Scholes)在美国政治经济学杂志上发表了期权和企业债务的定价 导出了著名的Black-Scholes期权定价公式 后经罗伯特.默顿(Robert Merton)的发展,演变成为所有衍生金融工具定价的理论基础 对现代的金融交易和企业财
3、务产生了深远影响 斯科而斯和默顿获得1997年诺贝尔经济学奖2022-10-6组合投资6一、马柯维茨的证券组合理论 1、单一证券的收益和风险 证券的收益 证券买卖的差价 持有期间获得的利息或股利 证券的收益率tttiPDPPR12022-10-6组合投资7预期的收益率 实际是投资者持有某种证券在未来一定时间内所获得的平均收益率,即收益率的期望值 其中:ER表示预期收益率;Ri表示第i种可能状态下的收益率;Pi表示的i种可能状态发生的概率。niiiPRER12022-10-6组合投资8证券的风险 用收益率的标准差来度量niiiPERR12)(2022-10-6组合投资9 投资者预计,在不同的市场
4、情况下,A股票的收益率和发生的概率如下表 计算A股票的预期收益率和风险市场情况概率收益率行情上涨0.315%行情不变0.58%行情下跌0.2-5%2022-10-6组合投资10预期收益率 ER150.380.550.2 7.5风险%75.62.0%)5.7%5(5.0%)5.7%8(3.0%)5.7%15(2222022-10-6组合投资112、证券组合的收益和风险证券组合的收益 其中:Xi表示证券i在该证券组合中所占的比重niiiprExrE1)()(121nxxx2022-10-6组合投资12组合投资的风险 一个证券组合的标准差的计算要复杂的多,不是个别证券标准差的简单平均 公式:COVi
5、j表示证券i和证券j的收益率之间的协方差ninjjiijpxxCOV112jiijijCOV2022-10-6组合投资13将上述公式可进一步整理成 由此,可以看出,证券组合的收益和风险主要取决于各种证券的相对比例,每种证券收益的方差以及证券和证券之间的相关程度。其他条件确定的情况下,投资者可以通过调整各种证券的购买比例来降低风险。nijijiijiipxxCOVx12222nijijijiijiipxxx122222022-10-6组合投资14马柯维茨的资产组合理论是以新古典经济学为基础的,因此资产组合理论的出发点是关于新古典经济的资本市场的一系列假设,它们是:假设条件假设条件1 1:资本市场
6、是完全的,即不存在交易费用和税收,不存在对市场的进入和退出的任何限制 假设条件假设条件2 2:投资者是风险回避型的,他们承担相应的风险是为了获取相应的收益,而较高的期望收益则要承担较高的风险。假设条件假设条件3 3:市场是有效的,或者是信息有效的,即市场有效地无成本、无摩擦地提供了全部信息,因而投资者对资产收益有一致的期望。假设条件假设条件4 4:决策是单周期的。2022-10-6组合投资15在这样的假设条件下,Markowitz建立了资产组合理论的两个判准,这就是:A A:在给定期望收益率下,选择最小方差的资产组合;B:在给定收益率的方差下,选择最大期望收益率的资产组合。Markowitz的
7、这两个判准又称为均值方差判准,它意味着投资者(风险回避型)在选择他的资产组合时是按上述两个判准进行的。2022-10-6组合投资16在给定期望收益率水平下求有最小收益率方差的资产组合:min w T v ws.t:=1 用拉各朗日方法求解。PTRREW)(1TW2022-10-6组合投资17得出的结果:符合条件的资产组合在收益率方差期望空间是抛物线,在收益率标准差期望空间是双曲线。标准差收益率2022-10-6组合投资18根据第二个判准,只取双曲线的上半部分 次部分称为有效集2022-10-6组合投资193、无差异曲线 投资者只会在有效集中选择证券组合,具体选择哪一点,需要根据投资者的个人偏好
8、 根据前面的两个判准,理性的投资者通常是:在同样的风险下,选择更大的收益率 厌恶风险 其偏好就可以用无差异曲线来表示2022-10-6组合投资20标准差收益率2022-10-6组合投资21标准差收益率最优资产组合的选择2022-10-6组合投资22二、资本资产定价模型 1、资本资产定价模型是建筑在一系列的假设条件的基础之上的,它是与投资者的行为及投资集合的特征有关的,包括:、投资者的效用是由期末财富的期望值和方差决定的;、投资者对所有资产收益的联合分布有一致的看法;、存在一个由资本市场外部决定的利率,无风险利率,投资者可以不受限制的以这个利率借贷;、不存在对卖空的限制;、资本市场是完全竞争的,
9、不存在税收和任何交易费用,也不存在股利。2022-10-6组合投资232、存在无风险贷款情况下的有效集 马柯维茨的理论没有考虑存在无风险贷款的情况 而现实生活中,投资者是可以借入无风险贷款的,这时,投资者面临的有效集变成了一条直线2022-10-6组合投资24ppRrfM2022-10-6组合投资25根据前提假设,存在无风险贷款的情况下,可以得出如下结论:根据相同预期的假设,每个投资者判断的M点都是相同的(M点是客观存在的),这样,每个投资者投资的风险资产的组合都是相同的,同时投资者的有效集都是一样的 但每个投资者的偏好不同,因此其无差异曲线不同,最优投资组合不同。(有的只投资无风险资产,有的
10、只投资风险资产,有的贷款投资)由上可以得出著名的分离定理:投资者对风险和收益的偏好状况与投资者投资风险资产的构成无关。2022-10-6组合投资26ppRM2022-10-6组合投资27根据分离定理,还可以得到另一个重要结论:在均衡状态下,每种证券在均衡点处的组合中都有一个非零的比例。因为,根据分离定理,每个投资者都持有相同的风险资产组合。如果某种证券在此组合中的比例为零,那么就没有人购买该证券,该证券的价格就会下降,一直到在最终的切点组合处,该证券的比例非零为止。同样,如果投资者对某种证券的需求量超过供给量,该证券的价格将上升,导致其预期收益率下降,从而降低其吸引力,它在切点处投资组合中的比
11、例也将下降,一直到对其需求量等于供给量为止。2022-10-6组合投资28所以,在均衡状态下,每个投资者对每种证券都愿意持有一定的数量,市场上各种证券的价格都处于使该证券的供求相等的水平上,无风险利率的水平也正好使得借入资金的总量等于贷出资金的总量。这样,在均衡时,切点处投资组合中各证券的构成比例等于市场组合中各证券的构成比例。所谓市场组合是指由所有证券构成的组合。在这个组合中,每一种证券的构成比例等于该证券的相对市价(即该证券的总市值除以所有证券的市值总和)。市场组合用M来表示2022-10-6组合投资293、资本市场线(capital market line,CML)根据资本资产定价模型,
12、可以得出有效组合的风险和收益之间的关系,在图上即表示成资本市场线。这条直线是在允许无风险贷款情况下的线性有效集,因此称为资本市场线。2022-10-6组合投资30ppRRfMmmRCPL2022-10-6组合投资31由图可以看出 资本市场线的斜率等于市场组合预期收益率与无风险收益率之差除以它们的风险之差 截距为无风险收益率 可以得出资本市场线的表达式:pmfmfpRRRR2022-10-6组合投资32可以看出,证券市场的均衡可用两个关键数字来表示:无风险收益率 和单位风险报酬 它们分别代表时间的报酬和风险的报酬 因此,从本质上说,证券市场提供了时间和风险进行交易的场所,其价格则由供求双方的力量
13、来决定。mfmRRfRpmfmfpRRRR2022-10-6组合投资334、证券市场线(security market line,SML)资本市场线反映的是有效组合的预期收益率和标准差之间的关系,任何单个风险证券由于不是有效组合而一定位于该直线的下方。因此,资本市场线并不能告诉我们单个证券的预期收益率与标准差(总风险)之间的关系。我们可以由资本市场线和市场组合M推导出证券市场线(CAPM模型)2022-10-6组合投资34CAPM模型2)(mimifmifimimmfmfiCOVrrrrCOVrrrr2022-10-6组合投资35CAPM的含义 从CAPM可以看出,风险资产的收益是由两部分组成
14、的:无风险资产的收益率rf 市场风险的补偿额(rmrf)此模型说明了:风险资产的收益率高于无风险资产的收益率 风险资产的所有风险包括市场风险和非市场风险,给予补偿的只是市场风险,而非生产风险是通过多元化投资来分散的 值是衡量市场风险的大小,因此风险资产的风险补偿额的大小取决于值的大小2022-10-6组合投资36值的一个重要特征 一个证券组合的值等于该组合中各种证券值的加权平均数,权数是各种证券在该组合中所占的比例。2022-10-6组合投资37CAPM模型由证券市场线来表示iRfRMSML12022-10-6组合投资38证券市场线将每一种收益率同相应的系统性风险连在一起,体现了高风险对应高收
15、益的原则。市场组合或与市场收益完全正相关的资产或资产组合的值等于1。M点的左边,收益率小于市场收益率;右边收益率大于市场收益率。2022-10-6组合投资39SML直线上面的每种资产,由于在同等市场风险下具有较高的收益率,投资者会踊跃购买,需大于求,从而使供给增加,最终使价格回落到原来的水平。位于SML直下的正好相反。当所有的证券都经过类似的调整,市场就处于均衡状态,此时,各种证券都落在SML上。2022-10-6组合投资40SML和CML的异同 两者的试用范围不同 CML只适合于描述无风险资产于市场组合在组合后的有效风险资产组合的收益和风险的关系;SML描述任何一种资产或资产组合的收益和风险
16、的关系。两者选择的风险变量不同 CML以总风险为横坐标轴;SML以市场风险为横坐标轴。2022-10-6组合投资41例题:Rm0.12;rf0.05;m0.1计算:股票A、B和AB等权数组合P的 值。利用CAPM模型,计算股票A、B和AB等权数组合的预期收益。股票与市场的相关系数标准差AB0.50.30.250.302022-10-6组合投资42解:(1)COV(rA,rm)0.50.250.10.0125 A0.0125/0.12=1.25 B0.009/0.12=0.90 P0.51.25+0.50.90=1.0752),(),(mmiimiimmirrCOVrrCOV2022-10-6组
17、合投资43(2)rA0.051.25(0.120.05)0.1375rB0.050.90(0.120.05)0.1130rP0.051.075(0.120.05)0.12525 或:rP0.50.13750.50.11300.1.2525)(fmifirrrr2022-10-6组合投资44三、套利定价模型(APT)CAPM模型假设资产的收益率只和资产的风险相关 APT放宽了此限制,和许多因素有关:如GDP的增长率,利率,汇率,通货膨胀率等。2022-10-6组合投资45APT的基础是因素模型 证券的收益率或多或少的受某一个或某几个因素的影响 ai表示无风险收益率 Fj表示风险因素的值 ij是敏
18、感系数,衡量证券i的收益率对因素F的敏感程度ijijiiiiFFFar22112022-10-6组合投资46只要能得到和F的各项参数,就可计算任何一种证券的预期收益率,并进一步推导出马柯维茨的有效边界。2022-10-6组合投资47套利定价理论的基本思想 套利定价理论假定投资者偏好收益率更高的证券,并假定收益率由因素模型而产生。套利行为是利用同一实物资产或证券的不同价格来赚取无风险无投入的利润行为。在有效市场中不存在套利行为 如利用不同外汇市场的不同汇率来套利,汇率低的货币,买入汇率高的货币 套利的最终结果是套利机会的消失,有效市场的形成。2022-10-6组合投资48套利组合 套利组合是无投
19、入的 套利组合是无风险的,即对任何因素的敏感为零021nxxx01212111nnxxx02222121nnxxx02211nknkkxxx2022-10-6组合投资49套利组合的预期收益率为正01211nnrxrxrx2022-10-6组合投资50套利定价模型的数学公式 投资者套利的过程是买入收益率偏高的证券同时卖出收益率偏低的证券,结果是收益率回到正常 这种正常是收益率和各种因素的敏感度保持适当的关系为止 条件是:无投入,无风险。nnrxrxrxMaxl12112022-10-6组合投资51最后得到:其中;k表示rkrf,因素k的风险代价,即投资者承担一个单位k因素风险的补偿额,风险的大小
20、由 ik表示。如果只有一个风险因素,则结果和CAPM模型相同。iKKifirR112022-10-6组合投资52对套利定价理论的评价 APT简化了CAPM模型的假设条件,更贴近现实;APT假定证券收益率和一系列因素相关 具体包括哪些因素尚未定论2022-10-6组合投资53四、期权定价公式(Black-Scholes期权定价公式)该模型是建立在无风险对冲(riskless hedge)概念基础上的,通过购买股票并立即出售股票的期权,使投资者达到一种无风险状态,即如果从股票上取得的利好会被期权损失所抵消 或者说,投资者无法股票和期权上获得套利机会2022-10-6组合投资54假设条件 在期权有效
21、期内,相关资产不支付股利;没有交易费用;在期权的有效期内,短期无风险利率是固定的;投资者可以按照无风险利率借入资本;允许卖空;期权只有在到期日才被执行(默顿后来导出了美式期权的定价模型);所有有价证券的交易是在连续期间内发生的,股价在连续期内是随机的。2022-10-6组合投资55 其中:S,有价证券的现行市场价格;X,期权的执行价格;T,期权期限,若期限为3个月,则T取0.25;TddTTTrXSddNXedSNCfTrf1212121)/ln()()(1)()(),(11ddxxfdNdN率,标准正态分布的累积概2022-10-6组合投资56假设某股票现行市场价格为50美元,其3个月看涨期
22、权的执行价格为45,年无风险利率6,股票预期收益的年方差为20,该股票不支付股利,则有:2022-10-6组合投资5762.76651.045742.0506651.01651.05.0)(742.0242.05.0)()()(4264.025.02.065.065.025.02.02125.02.025.006.0)45/50ln()()(25.006.0200121211eCdNdxxfdxxfdNdddNXedSNCdTrf2022-10-6组合投资58股价期权价格30405060700.141.937.6216.1525.752022-10-6组合投资59某公司的6个月的买入期权允许持
23、有者以30美元的价格购买股票,现在的股票市价为25美元。预期收益的标准差为0.20,年利率为8,根据B-S公式,期权价值是多少?如果股票市价为30美元,期权价值又是多少?2022-10-6组合投资60举一个期权的例子 举债经营的公司的权益可以看作公司投资者买入的看涨期权 公司举债可以视为股东将资产出售给债权人,债权人向公司支付现金和看涨期权,该期权的执行价格等于负债的本利和 若公司经营成功,股东按约定的执行价格执行期权,即支付本利和;反之,公司违背负债契约,放弃执行期权,将公司交给债权人。2022-10-6组合投资61在国际投资中,可以建立国际证券组合来分散风险。即通过投资于不同国家的证券,建立国际证券组合,能够在相同的收益率下获得比单纯的国内证券组合更小的风险 因为各国的经济发展状况、金融市场法规、社会文化环境等多种因素方面都存在着差异性,各国证券市场指数之间是不可能完全相关的,因此国际证券组合可以更有效的分散风险(国家风险)。感谢下感谢下载载