1、 抛物线定义及其标准方程抛物线定义及其标准方程江苏省宿豫中学江苏省宿豫中学 杨亚杨亚xyOFl当当 即即()时,时,M的轨迹是的轨迹是 .复习:复习:椭圆、双曲线的第二定义:椭圆、双曲线的第二定义:MFl0e 1lFMe1FMle=1平面内动点平面内动点M到定点到定点F的距离与到定直线的距离与到定直线l 的距离的比为的距离的比为e,则则当当 时,点时,点M的轨迹是的轨迹是椭圆椭圆;当当 时,点时,点M的轨迹是的轨迹是双曲线双曲线;0e1点点M 到点到点F的距离与到的距离与到l 的距离相等的距离相等抛物线抛物线e=1平面内与一个定点平面内与一个定点F和一条定直线和一条定直线l的距离相等的点的轨迹
2、叫做的距离相等的点的轨迹叫做抛物线抛物线。定点定点F叫做抛物线的叫做抛物线的焦点焦点。定直线定直线l 叫做抛物线的叫做抛物线的准线准线。的轨迹是抛物线。则点若MMNMF,1即即:一、定义一、定义FMlN二、标准方程二、标准方程FMlN想一想想一想如何建立直角如何建立直角 坐标系坐标系?yxoy=ax2+bx+cy=ax2+cy=ax2二、标准方程二、标准方程xyoFMlNK设设KF=p则则F(,0),),l l:x=-p2p2设点设点M的坐标为(的坐标为(x,y),),由定义可知,由定义可知,化简得化简得 y2=2px(p0)2)2(2pxypx 方程方程 y2=2px(p0)叫做叫做抛物线的
3、标准方程。抛物线的标准方程。其中其中p为正常数,它的几何意义是为正常数,它的几何意义是 焦焦 点点 到到 准准 线线 的的 距距 离离准线方程准线方程焦点坐标焦点坐标标准方程标准方程焦点位置焦点位置 图图 形形3.不同位置的抛物线不同位置的抛物线 x轴的轴的正方向正方向 x轴的轴的负方向负方向 y轴的轴的正方向正方向 y轴的轴的负方向负方向y2=2pxy2=-2pxx2=2pyx2=-2py)0,2(pF)0,2pF(-)2,0(pF)2,0(pF-2=px-2=px2=py2=py-xyOFlxyOFlxyOFlxyOFl例例1.1.已知抛物线的标准方程是已知抛物线的标准方程是y2=12x、
4、y12x2求它们的焦点坐标和准线方程;求它们的焦点坐标和准线方程;(1)p6,焦点坐标是(3,0)准线方程是 x3(2)先化为标准方程 ,焦点坐标是(0,),准线方程是y .yx1212241p481481解:例2求分别满足下列条件的抛物线的标准方程:(1)焦点坐标是F(5,0)(2)经过点A(2,3)(1)焦点在x轴负半轴上,5,所以所求抛物线的标准议程是 2pxy202解:y22px 或 x22py点A(2,3)坐标代入,即94p,得2p点A(2,3)坐标代入x22py,即46p,得2p所求抛物线的标准方程是y2 x或x2 y(2)经过点A(2,3)的抛物线可能有两种标准形式:293429
5、34图 M(x,y)y x F(4,0)-4-5 例例3 3、点点M与点与点F(4,0)的距离比它到直线)的距离比它到直线l:x50的距离小的距离小1,求点,求点M的轨迹方程的轨迹方程 如图可知原条件等价于M点到F(4,0)和到x4距离相等,由抛物线的定义,点M的轨迹是以F(4,0)为焦点,x4为准线的抛物线所求方程是y216x分析:分析:练习:练习:1、根据下列条件,写出抛物线的标准方程:、根据下列条件,写出抛物线的标准方程:(1)焦点是)焦点是F(3,0););(2)准线方程)准线方程 是是x=;41(3)焦点到准线的距离是)焦点到准线的距离是2。y2=12xy2=xy2=4x、y2=-4
6、x、x2=4y 或或 x2=-4y2、求下列抛物线的焦点坐标和准线方程:、求下列抛物线的焦点坐标和准线方程:(1)y2=20 x (2)x2=y(3)2y2+5x=0 (4)x2+8y=021焦点坐标焦点坐标准线方程准线方程(1)(2)(3)(4)(5,0)x=-5(0,)18y=-188x=5(-,0)58(0,-2)y=2小小 结结 :1、椭圆、双曲线与抛物线的定义的联系、椭圆、双曲线与抛物线的定义的联系 及其区别;及其区别;2、会运用抛物线的定义、标准方程求它、会运用抛物线的定义、标准方程求它 的焦点、准线、方程;的焦点、准线、方程;3、注重数形结合的思想。、注重数形结合的思想。课堂作业
7、:课堂作业:课本课本 P100 1、3、4再见!小时候,我可以在母亲的背上无忧无虑的长大,是母亲编织了女儿的梦,点燃了心中那盏灯,伴我走过人生那坎坷的路程。我想不起病重的母亲是怎样背着我走路,我是怎样在母亲背上长大,可想而知,有病的母亲比健康的人更艰难。是母亲让我学会了人之初,做人做事的道理。当时我不懂母亲的心,她的爱她的温柔,她的关怀和牵挂,不懂事的我在母亲的包容下慢慢地长大,当我知道和读懂母亲的时候,母亲含着眼泪,带着多少担忧与牵挂永远的离开了我。我唯一的靠山倒了,但是母亲教会了我在逆境中学会坚强,勇敢地面对困难和失败,适应任何环境而求生存,这就是我的母亲留给我的无比珍贵的财富和爱。母亲虽
8、然走了,可她永远活在我的心里,我永远怀念她,她是我地唯一,无人取代,也是我的最爱,更是难忘的爱!我想不起小姨妈在母亲有病的时候是怎样抱着我,还是背着我,我不知道,从小姨妈对那段往事的回忆中,我才知道别人对她的冷眼,天寒地冷的无奈我才知道她的棉衣前襟是明亮发光的,而且经常是湿地;才知道烧无烟煤时熏黑了的脸上那双有黑有大的眼睛的明亮。那时候小姨妈只有十六岁,一个失去父母关爱的小女孩,能在姐姐病重的时候撑起一个家,还带着一个不满周岁的孩子,可想而知,这是多么不容易的事,每当小姨妈讲起那段往事,我就想起那苦难无助地童年,小姨妈无私的爱,让我永远难忘。小姨妈的人生很苦,很少有人去关她,可是她却为我们这些
9、没有母爱的孩子现出了她的青春和所有的爱。我母亲去世后小姨妈也经常照顾我,关心我。她不但关爱我,还有我的三姨家兄弟妹们。还在我母亲没有去世时,我的三姨妈由于有病去世了,留下四个孩子,最小的才两岁,她为了照顾这四个孩子,就和我三姨父结婚,把他们养大成人,现在孩子们都有了自己的家,可是小姨妈由于劳累过度,而病倒了,现在病在床上不能自理,当我今年回家看到小姨妈时,我很惭愧,她为我们付出的太多了,可我们又给了她什么,她看到我时那含泪的笑容,我才体会到母爱的无私和伟大,也许她不求我们什么,能常回家看看足矣,可我们却做不到,当我们爱自己的孩子的时候,可曾想过,我们把爱孩子的十分之一去爱母亲,她就足矣,往往这
10、一点也做不到,说句心里话,我们欠母亲的无法补偿,更无法用语言表达。我有这两位母亲,虽然我的人生很不幸,但我有她们给我的无私的爱,我永远是幸福的,她们对我的爱我永存心里。在美国西雅图的一所著名教堂里,有一位德高望重的牧师戴尔泰勒。有一天,他向教会学校一个班的学生们先讲了下面这个故事。那年冬天,猎人带着猎狗去打猎。猎人一枪击中了一只兔子的后腿,受伤的兔子拼命地逃生,猎狗在其后穷追不舍。可是追了一阵子,兔子跑得越来越远了。猎狗知道实在是追不上了,只好悻悻地回到猎人身边。猎人气急败坏地说:“你真没用,连一只受伤的兔子都追不到!”猎狗听了很不服气地辩解道:“我已经尽力而为了呀!”再说兔子带着枪伤成功地逃
11、生回家了,兄弟们都围过来惊讶地问它:“那只猎狗很凶呀,你又带了伤,是怎么甩掉它的呢?”兔子说:“它是尽力而为,我是竭尽全力呀!它没追上我,最多挨一顿骂,而我若不竭尽全力地跑,可就没命了呀!”泰勒牧师讲完故事之后,又向全班郑重其事地承诺:谁要是能背出圣经马太福音中第五章到第七章的全部内容,他就邀请谁去西雅图的“太空针”高塔餐厅参加免费聚餐会。圣经马太福音中第五章到第七章的全部内容有几万字,而且不押韵,要背诵其全文无疑有相当大的难度。尽管参加免费聚餐会是许多学生梦寐以求的事情,但是几乎所有的人都浅尝则止,望而却步了。几天后,班中一个11岁的男孩,胸有成竹地站在泰勒牧师的面前,从头到尾地按要求背诵下
12、来,竟然一字不漏,没出一点差错,而且到了最后,简直成了声情并茂的朗诵。泰勒牧师比别人更清楚,就是在成年的信徒中,能背诵这些篇幅的人也是罕见的,何况是一个孩子。泰勒牧师在赞叹男孩那惊人记忆力的同时,不禁好奇地问:“你为什么能背下这么长的文字呢?”这个男孩不假思索地回答道:“我竭尽全力。”16年后,这个男孩成了世界著名软件公司的老板。他就是比尔盖茨。泰勒牧师讲的故事和比尔盖茨的成功背诵对人很有启示:每个人都有极大的潜能。正如心理学家所指出的,一般人的潜能只开发了28左右,像爱因斯坦那样伟大的大科学家,也只开发了12左右。一个人如果开发了50的潜能,就可以背诵400本教科书,可以学完十几所大学的课程,还可以掌握二十来种不同国家的语言。这就是说,我们还有90的潜能还处于沉睡状态。谁要想出类拔萃、创造奇迹,仅仅做到尽力而为还远远不够,必须竭尽全力才行。