振动分析及技术应用简介课件.ppt

上传人(卖家):晟晟文业 文档编号:4487639 上传时间:2022-12-14 格式:PPT 页数:121 大小:1.64MB
下载 相关 举报
振动分析及技术应用简介课件.ppt_第1页
第1页 / 共121页
振动分析及技术应用简介课件.ppt_第2页
第2页 / 共121页
振动分析及技术应用简介课件.ppt_第3页
第3页 / 共121页
振动分析及技术应用简介课件.ppt_第4页
第4页 / 共121页
振动分析及技术应用简介课件.ppt_第5页
第5页 / 共121页
点击查看更多>>
资源描述

1、國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村1振動分析及實驗技術應用簡介國立屏東科技大學機械工程系暨研究所TEL:(08)770-3202轉7017FAX:(08)774-0142E-mail:wangbtmail.npust.edu.twwww:http:140.127.6.133teacherindex.htm王木百村國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村2摘要電腦輔助工程分析實驗模態分析振動學車輛動力學自行車 及其零組件 設計 測試 評估整車車架前叉把手及把手座曲柄避震器國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村3大綱 一、工程設計

2、與分析概述 二、振動問題解析 2-1 振動問題解析流程 2-2 振動分析類型 2-2-1 模態分析 2-2-2 簡諧響應分析 2-2-3 暫態響應分析 2-2-4 頻譜分析 2-3 振動系統 2-4 振動數學模型化步驟 三、應用CAE軟體之工程分析 3-1 有限元素分析重要名詞 3-2 有限元素分析應用步驟 3-3 應用CAE軟體之步驟 四、振動實驗量測分析 4-1 信號分析及系統分析 4-2 振動理論模態分析與實驗模態分析 4-3 實驗模態分析之應用 4-3-1 模型驗證 4-3-2 響應預測 4-3-3 模型變更 4-3-4 外力測定 4-3-5 次結構分析或組合分析 4-3-6 健康監測

3、或破壞檢測 五、車輛行駛品質特性分析 六、實例應用分析國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村4一、工程設計與分析概述工程設計與分析,涵蓋了造型設計(或工業設計)、運動力學分析(機構學或動力學)、靜力分析及動力分析等,以圖1-1力學問題之分野來界定說明其間之關係。造型設計(Styling design)或工業設計,產品或元件之設計不考慮有外力之作用,也沒有運動情形,通常僅就功能上及外觀上做產品之尺寸、造型、感觀設計,典型之例子,如傢俱造型、流線型、顏色選用等。無運動(without motion)有運動(with motion)無外力(without force)有外力(w

4、ith force)機動學(kinematics)動力學(dynamics)靜力學(statics)造型設計(styling)圖 1-1、力學問題分野1國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村5一、工程設計與分析概述(續)當忽略外力作用之效應,純粹探討機械元件之運動狀態,一般稱為機動學或機構學(Kinematics),主要在瞭解機械元件、系統之運動情形,通常假設物體為剛體(rigid body),以瞭解物體之位移(displacement)、速度(velocity)及加速度計(acceleration)隨時間變化之物體運動狀態,對組合之系統常須考慮是否有干涉(interfe

5、rence)或是考慮餘隙(clearance)。典型之機構運動分析問題,如四連桿組(four-bar linkage),引擎活塞運動等。靜力學(statics)係假設物體結構受到穩定的外力負荷(steady-state force),而物體沒有運動之行為,探討物體因外力負荷而變形(deformation)之狀態,以及瞭解物體結構受負荷之應變(strain)及應力(stress)狀態,以設計使得物體結構在承受靜態負荷(static loads)時,不會產生破壞(failure)導致結構體之失效或失能(malfunction),一般考慮結構體為彈性體(flexible),可探討彈性(elastic

6、)或塑性(plastic)變形效應。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村6一、工程設計與分析概述(續)動力學(dynamics)簡言之是探討物體受外力作用後,物體之運動狀態情形,可分別考慮物體為剛體或彈性體,分析了解結構體之位移或變形速度,加速度之運動狀態,也可進一步了解結構所呈現之變動應力狀態。廣義之動力學問題也涵蓋了結構振動學,結構噪音等相關問題。就工程設計流程,依以上之力學問題分類,進行步驟及層次可概分如下:1.造形設計2.運動分析設計3.靜力分析設計4.動態分析設計國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村7一、工程設計與分析概述(續)以一引擎

7、活塞連桿系統之設計為例,綜合各階段之設計步驟如下:1.造形設計:可針對空間,所要求功能進行,形狀、尺寸之概略設計。2.運動分析設計:就完成之活塞連桿造形,依引擎運轉條件,進行位移、速度及加速度分析,以了其運動狀態。3.靜力分析設計:考慮在額定引擎負荷條件下,活塞或連桿所承受靜力負荷,進行靜力破壞分折探討,以作必要之形狀尺寸變更設計。4.動力分析設計:對活塞連桿系統之結構振動行為做分析探討,以避免可能之共振,或疲勞破壞等問題。當然,工程設計分析,需考慮之因素相當多也相當複雜各影響因素,對各階段之設計,往往都有交互影響,尤需工程人對各設計層次之了解。本書目標則著重在動態分析設計層次。國立屏東科技大

8、學機械工程系 振動與噪音研究室作者:王木 百村8二、振動問題解析一結構體除了受到靜態負荷(static loads),也就是不隨時間變化之外力作用外,常常也會受到變動性的負荷之狀況,因此結構之動態分析也就異常需要。結構之動態分析通常是振動問題之解析,幾乎任何的結構系統都有振動之產生諸如汽車、飛機、橋樑、建築物、工具機、管路系統等只要是會動的機器或元件都需要考慮結構振動之響應元件小至如電腦內部之IC元件,大至建築物,上至天空之飛機、太空中之衛星地面之汽車、火車,海上之輪船、潛艇,工廠之機器,甚至一般家電用品一般家電用品,在產品設計過程均需考慮結構振動特性或振動響應之影響國立屏東科技大學機械工程系

9、 振動與噪音研究室作者:王木 百村9二、振動問題解析(續)本節即在對振動問題解析系統作一概括之說明,2-1 振動問題解析流程2-2 振動分析類型2-2-1 模態分析2-2-2 簡諧響應分析2-2-3 暫態響應分析2-2-4 頻譜分析2-3 振動系統離散系統連續系統2-4 振動數學模型化步驟國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村102-1 振動問題解析流程1.工程問題描述。2.定義問題及擬定分析目標。3.建構數學模型。4.分析。5.結果評估與討論。6.報告。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村112-1 振動問題解析流程(續)1.工程問題描述:假設有

10、一質塊(m)以一彈簧(k)連接於地如圖9-1(a),在質塊受外力f(t)作用,欲瞭解質塊隨時間變化之位移反應情形。kmtxtf)()(kmtxtf)()(ckmtxtf)()(h(a)a)無阻尼無阻尼(b)b)黏滯阻尼黏滯阻尼(c)c)結構阻結構阻尼尼單自由度數學模式單自由度數學模式國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村122-1 振動問題解析流程(續)2.定義問題及擬定分析目標:明確之問題定義必須瞭解結構之形狀、尺寸、材料及其阻尼形式,結構之邊界條件、初始條件、受負荷之外力形式等。典型之振動問題分析目標有四種1.模態分析:旨在求得系統之模態參數:包括自然頻率()、模態阻

11、尼()、模態振型(),也就是透過分析了解系統之特性,如圖9-2(a)2.簡諧響應分析:也在了解系統之特性,但是乃在求得系統之輸出與輸入間之頻率響應函數,通常應用在簡諧外力作用之系統響應分析,如圖9-2(b)。其中頻率響應數為nnn)()()(FXH國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村132-1 振動問題解析流程(續)2.定義問題及擬定分析目標:3.暫態響應分析:在已知系統特性以及輸入條件下,求解系統之輸出在時間域之響應,如圖9-2(c)。4.頻譜響應分析:在進行如圖9-2(d)之能量頻譜密度函數分析,通常適用在隨機外力激振狀況。也就是在已知系統特性以及輸入條件下,但在求

12、系統之輸出在頻率域之響應。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村142-1 振動問題解析流程(續)系統輸入輸出 )()()(XHF 系統物理參數系統物理參數:m、c、k)()()(FHX 模態參數模態參數:,nnn (a)(a)模態分析模態分析(b)(b)簡諧響應分析簡諧響應分析 )()()(txthtf )(H)(xxG)(ffG tdthftx0)()()()()()(2ffxxGHG (c c)暫態響應分析暫態響應分析(d(d)頻頻譜譜響應響應分析分析典型振動問題分析方塊圖典型振動問題分析方塊圖國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村152-1

13、振動問題解析流程(續)3.建構數學模型:需考慮幾項因素:所擬採用之系統數學模型之特性:離散系統(discrete system):包括單自由度系統及多自由度系統。連續系統(continuous system):如弦、線、柱、軸、樑、板、殼等。所採用之阻尼模型:無阻尼(如圖9-1(a))。黏滯阻尼(如圖9-1(b))。結構阻尼(如圖9-1(c))。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村162-1 振動問題解析流程(續)4.分析:在此分析指理論分析,最常見之分析方法有理論分析及有限元素分析,分別說明如下:理論分析:首先必須依定義之數學模型推導運動方程式,再進行求解之步驟。推導

14、運動方程式:如牛頓第二定律、拉格蘭日式(Lagranges Equation)等。求解:通常包括:常微分方程式解析、特徵值問題、拉氏轉換、數值積分等解析或半解析方法。有限元素分析:主要步驟如下。依所定義之數學模型,建立有限元素模型(finite element model)。應用軟體、求解有限元素模型之解析結果。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村172-1 振動問題解析流程(續)5.結果評估與討論:在此步驟應評估下列事項。(1)問題定義是否明確?(2)分析目標是否合宜,且是否能解決所描述工程問題?(3)數學模型化過程是否合理?(4)分析過程是否正確?(5)所分析結果是

15、否正確、合理?6.報告:書面及口頭報告國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村182-2 振動分析類型分析目標主要有四種分析類型1.模態分析。2.簡諧響應分析。3.暫態響應分析。4.頻譜分析。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村192-2-1 模態分析模態分析(modal analysis)之目的,主要在求解系統之自然頻率(natural frequency)及模態振型(mode shape),概稱之為模態參數(modal parameters)。任意結構系統當有固定之材料及形狀尺寸,以及既有之邊界條件,則模態參數為唯一的、不變的,可視為系統之特性。

16、如同一材料其密度、楊氏係數等材料性質,不論製作成何種形狀結構,材料性質均為相同因此獲得結構系統之模態參數,對產品設計過程是相當重要的步驟。同時在後續如簡諧響應、暫態響應及頻譜響應分析均需要系統模態參數資訊,才可做進一步之分析。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村202-2-1 模態分析瞭解系統模態參數,對產品設計時之考慮最常見的例子就是避免作用於系統之外力激振頻率與系統之自然頻率相同或是接近,而造成共振(resonance)效應,使得結構系統響應過大而產生破壞。結構系統之振動效應時常是造成疲勞破壞(fatigue failure)的原因瞭解系統之自然頻率及模態振型為進一

17、步做疲勞分析不可或缺之資訊。模態振型可顯現一結構系統受外力激振而產生之變形狀態,甚至得該振動模態(mode of vibration)之受應力狀況,可提供對產品設計時,結構補強或減少重量等變更設計時之重要資訊。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村212-2-1 模態分析一結構系統之振動模態或稱自然模態(natural mode),意指其自然頻率及模態振型。自然頻率與模態振型為成對出現,一般系統有n個自由度就有n個振動模態,也就是有n對之自然頻率及模態振型。通常較低頻率之振動模態為設計過程特別需注意,換言之系統之前數個模態參數通常為分析之重點。就理論上而言,一般結構均為連

18、續系統,具有無限多個自由度,也就是具有無限多個振動模態。在有限元素分析中,結構系統已被分割成諸多元素之組成,即連續系統已自動變成了離散系統之多自由度系統。因此,在模態分析只可得到有限個振動模態。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村222-2-2 簡諧響應分析所謂簡諧響應(harmonic response)分析是探討結構系統受一簡諧外力激振時之系統響應分析。就一線性振動系統受一簡諧外力作用有如下之特性:1.該系統之振動響應,包括了暫態響應(transient response)及穩態響應(steady state response)。暫態響應會隨時間之增加而逐漸消失,而

19、穩態響應則不隨時間變化而呈現週期性之簡諧響應。2.一系統受簡諧激振(harmonic excitation)其穩態響應也必為簡諧響應。3.簡諧函數包括了 ,及 ,單位為rad/sec,f 單位為Hz,稱為簡諧頻率(harmonic frequency)。tietsintcosf2國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村232-2-2 簡諧響應分析以一單自由度振動系統受簡諧激振如圖9-9所示為例,通常工程分析所欲瞭解的是,在已知系統參數m、c、k及外力激振之頻率及振幅FkcmtFtfsin)()sin()(tXtx )()(txtf系統inputoutput圖圖 9-9 9-

20、9 單自由度系統受簡諧激振示意圖單自由度系統受簡諧激振示意圖國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村242-2-2 簡諧響應分析求得位移響應振幅X及相位角,簡諧響應分析即在提供輸入與輸出間之關係,即系統之資訊,可以以下式表示:通常描述系統以頻率響應函數(Frequency Response Function)表示,一典型的單自由度系統之頻率響應如圖9-10簡諧響應分析旨在求得如圖9-10之頻率響應函數曲線圖,以供產品設計階段之評估。通常設計之考慮在如何避免共振、疲勞破壞,或是其他如位移或速度、加速度響應是否超出規範之額定範圍。國立屏東科技大學機械工程系 振動與噪音研究室作者

21、:王木 百村252-2-2 簡諧響應分析FX頻率 FX頻率響應圖頻率響應圖國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村262-2-2 簡諧響應分析簡諧響應分析亦可針對在某一頻率之簡諧激振,求得結構系統之變形,亦即簡諧響應變形,此稱為系統在簡諧激振下之操作變形振型(operational deflection shape,ODS)。由於諸多機器或元件通常於固定作業狀況下運轉,亦即於某固定轉速rpm下運轉,此轉速對應之頻率f=rpm/60(Hz),也就是振動源或輸入源為簡諧激振,則系統之輸出亦呈簡諧響應,由操作變形振型可了解機器結構於作業狀態下之振動情形,有助於結構之設計考慮,因此

22、求得系統之操作變形振型也是常見主要的振動分析目標之一。簡諧響應分析旨在求得如圖9-10之頻率響應函數曲線圖,以供產品設計階段之評估。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村272-2-3 暫態響應分析模態分析在求得模態參數,而簡諧嚮應分析在求得系統之頻率嚮應函數。暫態嚮應分析(transient response)旨在求得結構系統在受外力負荷或其他條件激振下之時間域嚮應,也就是要了解結構系統受輸入參數後,系統隨時間變化之情形。此類型問題通常是在已知負荷為時間之函數,擬求得如系統之位移在時間域的嚮應,有助了解結構系統受變動負荷後,系統實際之運動狀態。(a)(a)模態分析模態分

23、析(b)(b)簡諧響應分析簡諧響應分析 )()()(txthtf tdthftx0)()()(c c)暫態響應分析暫態響應分析(d(d)頻頻譜譜響應響應分析分析典型振動問題分析方塊圖典型振動問題分析方塊圖國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村282-2-4 頻譜嚮應分析相對於暫態嚮應分析是時間域嚮應之解析,則頻譜嚮應(spectrum response)分析是頻譜域嚮應之解析。往往如地震、風力、海洋波動、噴射引擎推動力等外力激振源為隨機(random)信號型式,很難在時間域描述其外力型式,或寫出外力之數學函數,因此解析此種隨機外力激振之結構振動問題,常藉助時間域與頻率域之

24、轉換,係基於傅立葉轉換(Fourier transform)之理論基礎在假設系統之頻率嚮應數 為已知,以及外力之時間域分佈可轉換為頻率域之外力函數,則可求得結構系統之位移(或速度、加速度)之頻率域嚮應。)(H國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村292-2-4 頻譜嚮應分析以一單自由度振動系統為例,如圖9-2(d)解析步驟說明如下:1.對 取傅立葉轉換得 。2.由 求得位移嚮應頻率域函數。3.對 取反傅立葉轉換(inverse Fourier transform)得 。若 為隨機信號型式,可以將 表示成頻譜密度函數 ,由下式可求得位移之頻譜密度函數 :)(tf)(F)()

25、()(HFX)(X)(tx)(tf)(tf)(ffG)(xxG (a)(a)模態分析模態分析(b)(b)簡諧響應分析簡諧響應分析 )(H)(xxG)(ffG )()()(2ffxxGHG (c c)暫態響應分析暫態響應分析(d(d)頻頻譜譜響應響應分析分析典型振動問題分析方塊圖典型振動問題分析方塊圖國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村302-2-4 頻譜嚮應分析典型之頻譜嚮應分析的應用問題舉例如下:1.汽車行駛於不規則路面之車體振動嚮應分析。2.建築物受地震波激振時之結構體嚮應分析。3.噴射機、火箭或飛彈在飛行中由燃料燃燒之噴射推力所造成之結構 體嚮應分析。4.任意受測

26、試產品或元件,如PC板、筆記型電腦,甚至冷氣機等家電用品,置於振動測試台,以隨機信號激振之模擬分析。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村312-3 振動系統在結構振動問題之解析流程,系統之數學模型化(mathematical modeling)是關鍵之步驟,首先必須了解振動系統之類型及其分析理念與解析技巧,本節將分別對離散系統(discrete system)單自由度系統多自由度系統,一般化連續系統(continuous system)就各種分析類型作說明。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村322-3 振動系統比較項目單自由度系統多自由度系統連

27、續系統運動方程式常微分方程式(ODE)聯立常微分方程組偏微分方程式(PDE)自由度數目1n模態參數自然頻率:n阻尼比:自然頻率:r,r=1,2,3,n阻尼比:r,r=1,2,3,n模態振型向量:r,r=1,2,3,n然頻率:r,r=1,2,3,阻尼比:r,r=1,2,3,模態振型函數:)(xr,r=1,2,3,自然頻率1 個n 個個國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村332-3 振動系統比較項目單自由度系統多自由度系統連續系統模態振型無n 個向量型式個函數型式阻尼比1 個n 個個頻率響應函數型式)2()(1)(22nniFXHnnrrrrjrijiijiFXH122)2

28、()()(122)2()()()(rrrrjrirjiijixxFXH適用之有限元素質量元素、彈簧阻尼元素質量元素、彈簧阻尼元素各種元素(桁架、樑、平面、立體、板殼元素)模態分析方式mkn,=ccc聯立 ODE 化簡為 n個獨立 ODEPDE 化簡為個獨立 ODE特徵值ODE 特徵值矩陣特徵值問題PDE 特徵值問題國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村342-4 振動問題之數學模型化步驟以建構離散系統之數學模型為例,其數學模型化(mathematical modeling)步驟如下:(1)定義系統之質塊元件:典型之質塊元件如圖1-4所示,包括:質中質塊(concentra

29、ted mass),剛性細長型質塊(rigid slender bar),剛性薄平板及剛性圓盤(rigid disc)所需要之基本物理性質包括質量大小,質量慣性矩(mass moment of inertia)亦如圖1-4。m:借秖x m:借秖)(121:2重心位置質量慣性矩mLIyy=yyLx(a)(a)集中質塊集中質塊 (b)(b)剛性長形質塊剛性長形質塊圖圖 1-1-4 4、典型、典型之質塊元件之質塊元件國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村352-4 振動問題之數學模型化步驟(續)(2)定義系統之連接元件:典型之連接元件,包括線性彈簧元件,及阻尼元件主要應用在質塊

30、間之連結。典型之線性彈簧元件如圖1-5(a),其特性曲線如圖1-5(b),k為彈簧常數,彈簧力 與彈簧變形位移量x成正比,即 。zzyLzLzyxyym:借秖2121:zyymLI2121yzzmLI=借秖篋痻,m:借秖221:mrI=借秖篋痻r(c)(c)剛性薄平板剛性薄平板 (d)(d)剛性圓盤剛性圓盤圖圖 1-1-4 4、典型之質塊元件、典型之質塊元件sFkxFs國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村362-4 振動問題之數學模型化步驟(續)典型之線性黏滯阻尼元件,如圖1-6(a),其特性曲線如圖1-6(b),c為黏滯阻尼係數,阻尼力 與阻尼元件之變形速度 成正比,

31、即 。典型之線性結構阻尼元件,如圖1-7(a),其特性曲線如圖1-7(b),h為結構阻尼係數,阻尼力 與阻尼元件之變形速度 成正比,即 。dFx xcFddFixihxFd kxFsxkxsF (a)(a)示意圖示意圖 (b)(b)特性曲線特性曲線圖圖 1-1-5、線性彈簧元件線性彈簧元件國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村372-4 振動問題之數學模型化步驟(續)xxdFxcFd(a)(a)示意圖示意圖 (b)(b)特性曲線特性曲線圖圖 1-1-6、線性黏滯阻尼元件線性黏滯阻尼元件 xxhdFihxFd(a)(a)示意圖示意圖 (b)(b)特性曲線特性曲線圖圖 1-1

32、-7、線性結構阻尼元件線性結構阻尼元件國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村382-4 振動問題之數學模型化步驟(續)(3)定義系統之自由度:一質點之自由度通常有三個方向位移x,y,z及三個方向旋轉 自由度,如圖1-8所示。在此步驟需依實際問題對質塊元件,明確定義有興趣之自由度及總數目。zyx,xyzzyx圖 1-8、質塊自由度示意圖國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村392-4 振動問題之數學模型化步驟(續)典型之自由度定義範例如下說明:集中質塊:如圖1-9(a)、(b)均為集中質塊系統,圖1-9(a)僅需定義一個自由度,而圖1-9(b)則需兩個

33、自由度,因x及y方向均有彈簧連接集中質塊。剛性長形質塊:如圖1-9(c)需定義兩個自由度,以能明確敘述該長形質塊之運動狀態,而圖1-9(d)因在水平方向有彈簧,故需多定義水平方向之自由度。剛性薄平板:如圖1-9(e)需定義三個自由度,以能明確敘述該平板之運動狀態,而圖1-9(f)因在水平方向有彈簧,故需多定義水平方向之自由度。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村402-4 振動問題之數學模型化步驟(續)kmxk kxkkky(a)集中質塊範例一集中質塊範例一 (b)集中質塊範例二集中質塊範例二kzkx kzkxkky (c)剛性長形質塊範例一剛性長形質塊範例一 (d)剛

34、性長形質塊範例二剛性長形質塊範例二圖圖 1-1-9 9、定義自由度範例定義自由度範例國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村412-4 振動問題之數學模型化步驟(續)(4)定義系統之邊界條件:以圖1-2(b)之單自由度系統為例,底部為固定端,質塊可自由垂直振動。(5)定義系統之初始條件:以圖1-2(b)之單自由度系統為例,需分別定義初始位移及初始速度,、。(6)定義系統之輸入條件:典型之輸入條件為外力負荷及位移兩種,以圖1-2(b)之單自由度系統為例,其輸入條件為。zyxkkk zyxkkkykkkk(e)剛性薄平板範例一剛性薄平板範例一 (f)剛性薄平板範例二剛性薄平板範

35、例二圖圖 1-1-9 9、定義自由度範例定義自由度範例(續)(續)0)0(xx0)0(vx)(tf國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村42三、應用CAE軟體之工程分析電腦輔助工程分析(Computer Aided Engineering,CAE)軟體,要正確的、有效的應用有限元素分析軟體從事工程分析之主要步驟說明如下:1.問題描述2.定義實際問題與分析目標3.架構數學模式4.架構理念有限元素模型5.應用軟體進行分析6.結果解釋與評估7.製作報告讀者須注意的是,以上步驟不論採用何種商業套裝軟體,步驟14,是必須的、是相同的,當完成了理念有限元素模型,則可進入步驟5(CAE

36、軟體應用),國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村433-1 有限元素分析重要名詞元素依據不同形式的結構,如桁架、樑、板、柱、殼等,以及結構體之特性,可架構不同形式的元素,以適用於各種類型的結構。不論何種形式之元素,每一個元素係由若干節點所組成元素之定義須說明元素形狀、節點位置及數目,和每一節點之自由度。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村443-1 有限元素分析重要名詞節點依據不同形式的元素,節點可有下列形式:(1)角節點(corner node)(2)邊節點(side node)(3)面節點(face node)(4)體內節點(body nod

37、e)每一個節點都必須定義其自由度。自由度:在力學分析,以直角座標系為例,一個節點可有3個方向位移及3個方向角位移,如圖1-2所示。uvwzxy國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村453-1 有限元素分析重要名詞:元素種類1.線形元素:如桁架(truss)元素、樑(beam)元素,介面(interface)或接觸(contact)元素,依應用場合又可概分為,一維(one-dimensional)、二維或平面、及三維或立體之線形元素一維桁架元素樑元素接觸元素xx二維y三維xyz國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村46元素種類(續)2.平面型元素:依形

38、狀可分為三角形(triangle)及四邊形(quadrilateral)元素,常見之平面型元素如圖1-4。在此值得注意的是,儘管形狀相同之平面型元素,可以有不同數目及不同位置之節點定義。節點可座落於角頂點、邊點及平面之中間點如圖1-4。有關節點之自由度又依應用場合,如平面結構、板結構、殼結構角節點邊節點面節點國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村47元素種類(續)3.立體元素:所有的結構可以說都是立體的,原則上任何結構都可以以立體元素作分析。常見之立體元素,依形狀區分有角錐體(tetrahedron)及立方體(hexahedron)角節點邊節點體內節點角節點體內節點邊節點

39、國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村483-2 有限元素分析實例應用步驟1.實際問題應由實際問題,確立問題定義及分析目標,如圖1-6所示一個中心孔方形板,長度L、寬度L、厚度h,在兩端各受夾持,承受拉伸及壓縮之往復拉力p(t)定義如下:其中,F為力之大小,f為頻率。ftFtp2sinp(t)p(t)LhL國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村493-2 有限元素分析實例應用步驟(續)2.數學模式化欲架構數學模式,須完整的描述結構之幾何形狀,負荷狀態及邊界條件。假設兩端夾持力是均勻分佈,又為薄板,可假設該板呈平面壓力(plane stress)狀態,

40、其數學模式可得如圖1-7,圖中均佈力P可得:yxPPhLFP國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村503-2 有限元素分析實例應用步驟(續)3.架構有限元素模型由所形成如圖1-7之數學模型可知,該板為薄板,呈平面應力(plane stress)狀態,故可採用平面元素,又具中心孔之方形板幾何形狀及受負荷狀況,呈上下左右對稱,所以可只取1/4個板架構有限元素模型(finite element model)如圖1-8在左邊及下邊分別為對稱面、水平方向及垂直方向位移必須分別為零,因此得圖1-8之理念有限元素模型。欲完整之架構有限元素模型,應該選擇適當元素形式,並決定結構分割元素大

41、小,有關元素之選擇,及如何決定元素之大小,將在爾後說明,在此選擇線性平面四邊形元素,採自由分割(free mesh)模式可得到有限元素分析模型如圖1-9。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村513-2 有限元素分析實例應用步驟(續)3.架構有限元素模型國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村523-2 有限元素分析實例應用步驟(續)4.求解有限元素分析之求解過程都不簡單,然而由於有限元素分析套裝軟體之普遍性,不論繪圖能力、求解速度,均適用於各種問題,因此假設套裝軟體可依所架構之有限元素模型求得其正確解,應注意的是此正確解,乃是該有限元素模型之正確解,

42、不代表是數學模型的正確解,也不代表是實際問題之正確解。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村533-2 有限元素分析實例應用步驟(續)5.解釋說明分析結果(a)位移變形圖 (b)x方向正向應力分佈圖國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村543-2 有限元素分析實例應用步驟(續)5.解釋說明分析結果(c)von Mises應力分佈圖 (d)最大主應力分佈圖國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村553-2 有限元素分析實例應用步驟(續)6.評估:在此評估階段應考慮:(1)數學模式化之過程是否合理?(2)理念有限元素模型是否正確?(3

43、)所架構之實際有限元素模型是否吻合理念有限元素模型?(4)該有限元素模型之解是否夠精確?是否要進行收斂性分析?(5)所得之解是否吻合實際問題之物理現象?是否合乎分析目標之要求?(6)所得之解與其他分析之比較驗証,正確性如何?國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村563-3 應用有限元素分析軟體之步驟電腦輔助工程分析(Computer Aided Engineering,CAE)軟體,要正確的、有效的應用有限元素分析軟體從事工程分析之主要步驟說明如下:1.問題描述2.定義實際問題與分析目標3.架構數學模式4.架構理念有限元素模型5.應用軟體進行分析6.結果解釋與評估7.製作

44、報告以上步驟在前節已有說明,讀者須注意的是,不論採用何種商業套裝軟體,步驟14,是必須的、是相同的,當完成了理念有限元素模型,則可進入步驟5(CAE軟體應用),本節將著重在說明步驟5國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村573-3 應用有限元素分析軟體之步驟1.前處理(preprocessing)此步驟在對已完成架構之理念有限元素模型,實際進行建立工作,主要工作項目:(a)定義所擬使用之元素形式(b)定義元素所需之材料性質(c)定義元素所需之幾何性質(d)建構實際結構之有限元素模型分割其中,欲建立有限元素模型分割之方法,主要有兩種方法1.18:(a)直接架構法(direc

45、t generation)(b)實體模型架構法(solid modeling)國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村583-3 應用有限元素分析軟體之步驟直接架構法,首先須定義節點之座標位置,再定義一個元素由那些節點所組成,定義節點及元素除了直接定義外,一般軟體提供複製的功能,可快速的定義出有限元素模型之分割。此法一般適用於簡單形狀之有限元素模型,分析人員必須先有詳細的元素與節點座標位置之規劃,直接架構法之架構流程如圖1-17。12(1)直接定義節點(1)直接定義節點1342(2)複製節點(2)複製節點 11342(3)直接定義元素(3)直接定義元素 123(4)複製元素

46、(4)複製元素(5)再複製元素(5)再複製元素 11:代表節點:代表元素國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村593-3 應用有限元素分析軟體之步驟實體模型架構方法,I.首先建構幾何模型(geometry model),應注意的是此幾何模型僅為輔助便於架構有限元素模型之分割,兩種繪圖建構幾何模型的方式由下而上(bottom-up)由上而下(top-down)II.接著要定義結構之有限元素模型的元素分割尺寸控制(mesh control)III.最後再進行分割(meshing)的動作,以得到所需要之有限元素模型及其元素分割國立屏東科技大學機械工程系 振動與噪音研究室作者:王

47、木 百村603-3 應用有限元素分析軟體之步驟A.由下而上的方式乃定義點(point)之座標,再定義由點連成線(line)或弧(arc),再定義由數個線組成面(area),最後由數個面可定義體積(volume)。分析人員可依步驟4所定義之有限元素模型,繪製其外形,由下而上之架構實例示意圖如圖1-18。B.由上而下的方式係先定義產生固定之幾何形狀,如矩形、圓形、立方體、球體、圓柱等,一般稱為初始元件(primitive),或以所謂表面模型法(surface modeling),如引伸(dragging)、旋轉(rotating)等方式產生幾何表面或物體,其次再對所建構之幾何元體進行布林運算(Bo

48、olean operation),作邏輯加減運算以組合成所需之幾何模型,由上而下之架構實例如圖1-19。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村61A.由下而上的方式(1)定義點座標 (2)連接點成線 (3)由線組合成面(4)控制元素分割尺寸 (5)進行元素分割3-3 應用有限元素分析軟體之步驟p1p2p3p4p5 L1L2L3L4L5 A1 國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村62B.由上而下的方式(4)(4)控制元素分割尺寸控制元素分割尺寸 (5)(5)進行元素分割進行元素分割3-3 應用有限元素分析軟體之步驟 (1)產生初始元件:(1)產生初始

49、元件:矩形及圓形 矩形及圓形(2)布林運算:(2)布林運算:矩形及圓形 矩形及圓形(3)得到所需(3)得到所需 幾何模型 幾何模型國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村63建構幾何模型一般商用套裝軟體可由前述之由上而下或由下而上的方式架構幾何模型,也可利用其他CAD軟體,繪製幾何模型,再透過圖形介面檔案,如原始圖形交換檔(initial graphics exchange specification,IGES),傳入CAE軟體,IGES檔為一種文字檔(text file)定義了各種幾何實體形狀之標準格式,以供各種CAD/CAM/CAE軟體間,幾何圖形之互換與溝通,以減少重

50、複幾何圖形之建構。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村643-3 應用有限元素分析軟體之步驟2.求解(solution)當完成有限元素模型分割之架構,針對結構靜力分析為例,尚須設定位移限制及外力負荷,一般軟體提供之設定方式也有兩種,一是直接在節點或元素上設定位移限制及外力負荷;一是將位移限制及外力負荷設定在所建構之幾何模型上 不論採用何種方式,都必須正確的設定,以符合理念有限元素模型之要求。國立屏東科技大學機械工程系 振動與噪音研究室作者:王木 百村653-3 應用有限元素分析軟體之步驟2.求解(solution)當完成位移限制及外力負荷設定即可進行求解工作,雖然實際求

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(振动分析及技术应用简介课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|