1、真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华高考定位高考定位1.以分段函数、二次函数、指数函数、对数函数为载体,考查函数的定义域、最值与值域、奇偶性、单调性;2.利用图象研究函数性质、方程及不等式的解,综合性强;3.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理.数形结合思想是高考考查函数零点或方程的根的基本方式.第第1讲函数图象与性质及函数与方程讲函数图象与性质及函数与方程真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题
2、型突破归纳总结归纳总结思维升华思维升华真真 题题 感感 悟悟1.(2017浙江卷)若函数f(x)x2axb在区间0,1上的最大值是M,最小值是m,则Mm()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,但与b无关D.与a无关,但与b有关真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案B真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华A.2 B.4 C.6 D.8答案C真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华3.(2017全国
3、卷)已知函数f(x)在(,)上单调递减,且为奇函数.若f(1)1,则满足1f(x2)1的x的取值范围是()A.2,2 B.1,1 C.0,4 D.1,3答案D真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案B真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案D真题感悟真题感悟考点整合考点整合热点聚焦热点聚
4、焦题型突破题型突破归纳总结归纳总结思维升华思维升华考考 点点 整整 合合1.函数的性质(1)单调性用来比较大小,求函数最值,解不等式和证明方程根的唯一性.常见判定方法:()定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;()图象法;()复合函数的单调性遵循“同增异减”的原则;()导数法.(2)奇偶性:若f(x)是偶函数,那么f(x)f(x);若f(x)是奇函数,0在其定义域内,则f(0)0;奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性;真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思
5、维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.(2)在研究函数性质特别是单调性、值域、零点时,要注意用好其与图象的关系,结合图象研究.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华3.求函数值域有以下几种常用方法:(1)直接法;(2)配方法;(3)基本不等式法;(4)单调性法;(5)求导法;(6)分离变量法.除了以上方法外,还有数
6、形结合法、判别式法等.4.函数的零点问题(1)函数F(x)f(x)g(x)的零点就是方程f(x)g(x)的根,即函数yf(x)的图象与函数yg(x)的图象交点的横坐标.(2)确定函数零点的常用方法:直接解方程法;利用零点存在性定理;数形结合,利用两个函数图象的交点求解.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华热点一函数性质的应用【例1】(1)(2017山东卷)已知f(x)是定义在R上的偶函数,且f(x4)f(x2).若当x3,0时,f(x)6x,则f(919)_.(2)(2017天津卷)已知奇函数f(x)在R上是增函数,g(x)xf(x)
7、.若ag(log25.1),bg(20.8),cg(3),则a,b,c的大小关系为()A.abc B.cbaC.bac D.bca真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案(1)6(2)C真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华探究提高(1)可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式的范围内的函数值.(2)利用函数的对称性关键是确定出函数图象的对称中心(对称轴).真题感悟
8、真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案(1)1(2)2真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华热点二函数图象的问题命题角度1函数图象的变换与识别【例21】(1)(2017浙江诊断)已知f(x)2x1,g(x)1x2,规定:当|f(x)|g(x)时,h(x)|f(x)|;当|f(x)|g(x)时,h(x)g(x),则h(x)()A.有最小值1,最大值1B.有最大值1,无最小值C.有最小值1,无
9、最大值D.有最大值1,无最小值真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华解析(1)由题意得,利用平移变换的知识画出函数|f(x)|,g(x)的图象如图,真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案(1)C(2)B真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华探究提高(1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称
10、变换.尤其注意yf(x)与yf(x)、yf(x)、yf(x)、yf(|x|)、y|f(x)|及yaf(x)b的相互关系.(2)识图:从图象与x轴的交点及值域、单调性、变化趋势、对称性、特殊值等方面找准解析式与图象的对应关系.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华命题角度2函数图象的应用A.(,0 B.(,1)C.2,1 D.2,0真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华(2)(2015全国卷)设函数f(x)ex(2x1)axa,其中a1,若存在唯一的整数x0使得f(x0)0时,与y
11、|f(x)|在y轴右侧总有交点,不合题意;当a0时成立;当a0时,找与y|x22x|(x0)相切的情况,即y2x2,切点为(0,0),此时a2022,即有2a0,综上,a2,0.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案(1)D(2)D真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华探究提高(1)涉及到由图象求参数问题时,常需构造两个函数,借助两函数图象求参数范围.(2)图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.真题感悟真题感悟考点
12、整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华【训练2】(2017丽水调研)已知函数f(x)|x2|1,g(x)kx.若方程f(x)g(x)有两个不相等的实根,则实数k的取值范围是()解析由f(x)g(x),|x2|1kx,即|x2|kx1,所以原题等价于函数y|x2|与ykx1的图象有2个不同交点.如图:真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案B真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华热点三函数的零点与方程根的问题命题角度1函数零点的判断真题感悟真
13、题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华观察图象可知,两函数图象有2个交点,故函数f(x)有2个零点.答案(1)C(2)2真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华探究提高函数零点(即方程的根)的确定问题,常见的有函数零点值大致存在区间的确定;零点个数的确定;两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是求解含有绝对值、分式、指数、对
14、数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华命题角度2由函数的零点(或方程的根)求参数【例32】(1)(2017全国卷)已知函数f(x)x22xa(ex1ex1)有唯一零点,则a()真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升
15、华答案(1)C(2)B真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华探究提高利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结
16、思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华答案(1)A(2)D真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华2.如果一个奇函数f(x)在原点处有意义,即f(0)有意义,那么一定有f(0)0.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华3
17、.三招破解指数、对数、幂函数值的大小比较.(1)底数相同,指数不同的幂用指数函数的单调性进行比较;(2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同,真数也不同的两个数,常引入中间量或结合图象比较大小.4.三种作函数图象的基本思想方法(1)通过函数图象变换利用已知函数图象作图;(2)对函数解析式进行恒等变换,转化为已知方程对应的曲线;(3)通过研究函数的性质,明确函数图象的位置和形状.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华5.求函数零点时,若对于给定的函数不能直接求解或画出图形,则常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.