第十章矩-阵-位-移-法课件.ppt

上传人(卖家):晟晟文业 文档编号:4518267 上传时间:2022-12-16 格式:PPT 页数:25 大小:537.50KB
下载 相关 举报
第十章矩-阵-位-移-法课件.ppt_第1页
第1页 / 共25页
第十章矩-阵-位-移-法课件.ppt_第2页
第2页 / 共25页
第十章矩-阵-位-移-法课件.ppt_第3页
第3页 / 共25页
第十章矩-阵-位-移-法课件.ppt_第4页
第4页 / 共25页
第十章矩-阵-位-移-法课件.ppt_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、第一节第一节 矩阵位移法的概念矩阵位移法的概念 结构矩阵分析方法是利用计算机进行结构力学计算的方法。杆系结构的有限单元法矩阵力法矩阵位移法柔度法刚度法(直接刚度法)*矩阵位移法是以位移法为力学原理,应用矩阵理论,以电子计算机为工具的结构分析方法。有限单元法包含两个基本环节:一是单元分析;一是整体分析。在矩阵位移法中:单元分析的任务是建立单元刚度方程,形成单元刚度矩阵讨论任意坐标系中单元刚度方程的通用形式;整体分析的任务是将单元及合成整体,由单元刚度矩阵按照刚度集成规则形成整体刚度矩阵,建立整体结构的位移法基本方程,从而求解。直接由单元刚度矩阵导出整体刚度矩阵的集成规则,是矩阵位移法的核心内容。

2、返回下一张 上一张小结 以图示连续梁为例说明矩阵位移法的概念。03423222232121212MiMiMiM;23,12杆杆223212:0MMMM2212)34(iiM,2.绘M图。整体分析 建立位移法基本方程;求杆端弯矩;1.单元分析 确定基本未知量,划分单元杆;列各杆端转角位移方程返回下一张 上一张小结 17.1.2 17.1.2 直接刚度法直接刚度法 对于连续梁的每一个结点都视为有一个角位移未知 数,并规定这些转角均以顺时针方向为正。17.1.3 17.1.3 转角位移方程转角位移方程 式中:Kij(i=1,2,3;j=1,2,3)称为结点刚度系数。它表示当j=1时,在结点i处并在i

3、方向上所需加的结点力矩总和。333323213123232221211313212111MKKKMKKKMKKK返回下一张 上一张小结 写成矩阵形式为:简式为:式中:K为结构总刚度矩阵 Q为结点转角列阵 M为结点力矩列阵321321333231232221131211MMMKKKKKKKKK MK返回下一张 上一张小结 17.1.4 17.1.4 形成单元刚度矩阵形成单元刚度矩阵 例17-3:写出图示结构的杆端力矩 解:据转角方程可得:式中 上式写成矩阵形式为2122114224iiMiiMeeeeKiiiiMM42242121lEIi 返回下一张 上一张小结 17.1.5 17.1.5 形成

4、总刚度矩阵形成总刚度矩阵 例7-4:写出图7-4所示结构的刚度矩阵 解:图示结构的刚度矩阵:图17-4 22221111233232223222122121112111333231232221131211420244202400iiiiiiiiKKKKKKKKKKKKKKKKKK返回下一张 上一张小结 17.1.6 17.1.6 引入支承条件,求结点位移引入支承条件,求结点位移 已知上例支承条件 =0,连同已获得的K,以及各结点荷载值(M1、M2、及M3=0)一起代入基本方程(76)式中,得:据矩阵运算的基本法则,则得:解得:1004202442024213222221111MMiiiiiii

5、i04224423222221Miiiii)34(23421221232iiMiiM返回下一张 上一张小结 17.1.7 17.1.7 求单元杆端力求单元杆端力 例7-5:求图7-5所示连续梁 的杆端力 解:由题可知 杆1 杆2 注:以上用连续梁说明直接刚度的方法步骤,完全适用于其它类型结构。其中,K的组成 是直接刚度法的核心部分。2121212121211111121123443423404224iiMiiiMiiiMiiiiKMM03432)34(344224212221221222223223iiMiiiMiiMiiiiMM返回下一张 上一张小结 第二节第二节 单元刚度矩阵单元刚度矩阵

6、17.2.1 17.2.1 结构离散化结构离散化 将杆系结构分离有限个单元杆 离散化。原则:以杆元汇交点、荷载作用点、载面突变点为结点,尽量使相关结点,编码和差值最小。矩阵位移法讨论结点荷载问题,非结点荷载需另外处理。图7-6 17.2.2 17.2.2 单元杆端力和杆端位移表示方法单元杆端力和杆端位移表示方法 以i为原点,从i到j的方向为 轴的正向,并以 轴的正向逆时针转900为 轴的正向,这样的坐标系称为单元局部坐标系 单元杆端力和杆端位移符号的上方加一横“”,表示局部坐标的意思。xxy下一张返回上一张 小结 如图,结点的杆端位移列向量为:结点的杆端力列向量为:注:这些杆端位移和杆端力的正

7、向均规定与坐标轴的正方向一致为正;其中转角和弯矩以顺时针为正。eieieieivuejejejejvueieieieiMYXFejejejejMYXF返回下一张 上一张小结 17.2.3 单元杆端力与杆端位移之间的关系式 例17-7:计算如图17-8所示结构的各杆的杆端力 解:ejejeieiejejejeieiejejeiejejejeieieiejejeieieiejeieilEIvlEIlEIvlEIMlEIvlEIlEIvlEIYulEAulEAXlEIvlEIlEIvlEIMlEIvlEIlEIvlEIYulEAulEAX4602606120612000006604606120612

8、000002223232222323返回下一张 上一张小结 写成矩阵形式为:简式为:ejejejeieieiejejejeieieivuvulEIlEIlEIlEIlEIlEIlEIlEIlEAlEAlEIlEIlEIlEIlEIlEIlEIlEIlEAlEAMyxMyx460260612061200000260460612061200000222323222323eeeKF返回下一张 上一张小结 17.2.4 17.2.4 单元刚度矩阵的特性单元刚度矩阵的特性 1)Ke是对称方阵 单元刚度矩阵中的行数等于单元杆端力向量的分量数,列数等于单元杆端位移向量的分量数。因为这两个向量的分量数相等,所

9、以Ke是一个方阵。又因 Kij=Kji,故单元刚度矩阵是对称矩阵。2)Ke是奇异矩阵 矩阵Ke相应行列式的值为零,故知单元刚度矩阵是奇异矩阵。其逆矩阵不存在。17.2.5 17.2.5 单元刚度矩阵中各元素的物理意义单元刚度矩阵中各元素的物理意义 当j位移分量为1而其位移分量为零时,所引起的i分量值。eijK返回下一张 上一张小结 第四节第四节 结构刚度矩阵结构刚度矩阵由(1714)式可知:将(1721)及(1725)式代入上式得:另 TT eI=Ke 则 Fe=Ke e用结分点块式表示为:注:1)为结构坐标的杆端力和杆端位移。2)表示单元 的j端三个位移分别产生单位位移时在i 端各力分量分别

10、产生的力。3)分别为单元在结构整体坐标中刚度。ejeiejjejieijeiiejeiKKKKFFeeTeeeeTKTFTKFTK eeF,eijK jjjiijiiKKKK,eeeKFe返回下一张 上一张小结 17.3.1 结构总刚度矩阵结构总刚度矩阵 形成总刚的步骤:1)确定结点数,对结点及单元杆进行编号。2)计算结构坐标系中各单元的单元刚度矩阵。3)将各单元刚度矩阵的各子块,按“对号入座”送入结构总刚度矩阵中。17.3.2 17.3.2 结构总刚度方程结构总刚度方程 方程 式中:F 结构的结点力列向量;结构的结点位移列向量;K 结构的总刚度矩阵或叫结构整体刚度矩阵。FK返回下一张 上一张

11、小结 17.3.3 支承条件的引入支承条件的引入 结构总刚度方程(D)又叫结构原始刚度方程。其中K是奇异矩阵,不能求出确定的结点位移 。为此求解结构的未知结点位移时,引入结构的实际位移边界条件(即支承条件),修改 结构总刚度矩阵。具体步骤如下:1)利用已知的结点力F1 2)求未知的结点位移 3)划掉位移为零所对应的行和列。1返回下一张 上一张小结 第四节第四节 坐标变换矩阵坐标变换矩阵 例17-8:见图17-9所示单元 ,写出单元 的杆端力向量。解:由投影关系得 图17-9ejejejejejejejejeieieieieieieieiMMyxYyxXMMyxyyxxcossinsincosc

12、ossinsincosee返回下一张 上一张小结 写成矩阵形式为:ejejejeieieiejejejeieieiMYXMyxMYXMyx1000000cossin0000sincos0000001000000cossin0000sincos返回下一张 上一张小结 缩写成 式中:T为坐标变换矩阵 T为上交矩阵,其逆矩阵等于其转置矩阵。T=TT 式中:T-1与T相乘为1的矩阵;TT把T中行和列各元素互换后形成的。因此,上式的逆转换式为:同理得:eeeTeTFTF eTeT eeeFTF返回下一张 上一张小结 第五节第五节 非结点荷载的处理非结点荷载的处理 17.7.1 结间荷载转化为结点荷载的方

13、法结间荷载转化为结点荷载的方法(如图710):1)在 B、C 结点加附加约束,使 B、C 两点不能发生任何位移,然后施加 结间荷载,如图7-10(b)所示。2)在 B、C 两点没有附加约束的情况 下,施加与上述固端剪力和固端弯矩 大小相等方向相反的力和力矩,如图 7-10(c)所示。3)(a)=(b)+(c)4)等效结点荷载为汇交在每一结点的 固端剪力的代数和以及固端弯矩代数 和,但方向相反。图7-10返回下一张 上一张小结 17.7.2 例:试计算图17-11(a)所示刚架等效结点荷载。解:图17-11 分别绘在结点上,如图1711(b)所示。TTTTTFRPRmKNqlMmKNqlMKNq

14、lyKNqly3202200400100080120080120080120080120080124601280124601212024602120246021111122122211211返回下一张 上一张小结 17.7.3 例17-10:求图17-12(a)所示结构的等效结点荷载 解:分别绘在结上,如图b 所示。图17-12mKNMmKNplMmKNpymKNMmKNplMmKNqlMKNyKNqyKNyKNqlyCCCBBBBBBB03338648224231322338648322124212422224294542422222221/2/1返回下一张 上一张小结 第六节第六节 矩阵位

15、移法解题步骤矩阵位移法解题步骤 具体步骤如下:具体步骤如下:1)将结构划分为若干个单元,并将各单元和结点进行编号。2)选择结构坐标系及局部坐标系。3)计算等效结点荷载,建立结点荷载列向量和结点位移列向量。4)计算结构坐标系中各单元刚度矩阵的四个子块。5)将单元刚度矩阵的四个子块,按下标在结构总刚度矩阵中“对号入座”,建立结构总刚度矩阵和刚度方程。6)引入支承条件,划掉和已知位移为零所对应的行和列,计算结点位移。7)计算局部坐标中的杆端力。8)利用式(1749)和(1750)。返回下一张 上一张小结 第七节第七节 结构分析的计算机方法简介结构分析的计算机方法简介 17.9.1 17.9.1 程序

16、功能:程序功能:本程序只适用于各个杆件单元是等截面直杆,杆件之间是刚性连续,支座是固定端;承受的荷载是结点荷载。17.9.2 17.9.2 源程序说明:源程序说明:1)结点编号,先编可动结点,后编固定结点。2)局部坐标由小号结点码到大号结点码为 轴正向,逆时针转90为 轴正向。xy返回下一张 上一张小结 本本 章章 小小 结结 直接刚度法的解题思路:直接刚度法的解题思路:1)先将结构离散为有限个单元,通过单元分析,建立局部坐标单元刚度矩阵,然后形成局部坐标系单元刚度方程。2)通过坐标变换矩阵,依次用结构坐标系表示单元刚度矩阵。3)再将各单元刚度矩阵中的元素“按对号入座”的办法,叠加到结构刚度矩阵以形成总刚度矩阵。4)然后再引入支承条件进行计算。返回下一张 上一张小结

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第十章矩-阵-位-移-法课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|