完整版地质统计学与随机建模原理4-随机模拟课件.ppt

上传人(卖家):晟晟文业 文档编号:4538543 上传时间:2022-12-17 格式:PPT 页数:72 大小:12.34MB
下载 相关 举报
完整版地质统计学与随机建模原理4-随机模拟课件.ppt_第1页
第1页 / 共72页
完整版地质统计学与随机建模原理4-随机模拟课件.ppt_第2页
第2页 / 共72页
完整版地质统计学与随机建模原理4-随机模拟课件.ppt_第3页
第3页 / 共72页
完整版地质统计学与随机建模原理4-随机模拟课件.ppt_第4页
第4页 / 共72页
完整版地质统计学与随机建模原理4-随机模拟课件.ppt_第5页
第5页 / 共72页
点击查看更多>>
资源描述

1、第四章 随机模拟(条件模拟)估计和模拟?用克立格法来估值虽然有不少优点,但也有缺点,即它有圆滑(修匀)效应。若用克立格估值的离散方差来估计真实品位的离散方差,则估计往往偏小。而在编制采矿计划中很需要了解各种矿石特征(如品位或矿化厚度等)真实值的离散方差,叫其波动性大小。怎样才能更好地估计矿石特征真实值的离散方差呢??条件模拟的方法来重现真实值的离散方差。因为,用条件模拟方法得出的模拟值不但能保持与Z(x)的数学期望、方差和分布函数一样,而且还能保持协方差函数或变差函数一样,同时在各实测点处的模拟位还等于该点的实测值。但是,如果要用模拟值来估计其一点处的品位值或矿体厚度则是不好的,模拟值不是最优

2、的估计值,因为其估计方差太大。克立格估值曲线平均地说更接近于真实曲线,条件模拟曲线却较好地再现真实曲线的被动性。?用克立格法来估计,用条件模拟来重现波动性,二者结合起来,体现地质统计学的全部威力。传统模拟与地质统计学模拟?传统统计模拟要求伪随机数服从一定的概率分布,具有相同的数学期望与方差。?地质统计学模拟除上述要求外,还要保持一定的的空间自相关性,即保持与实际数据有相同的协力差函数或变差函数。这是因为区域化变量不仅有随机性的一面,而且还有空间结构性的一面。保持上述性质的模拟在地质统计学中称为非条件模拟。如果再增加一个条件,要求在各观测点处的模拟值均等于该点处的实例值。这时的模拟就称为条件模拟

3、。地质统计学条件模拟?条件模拟是地质统计学里特有的内容,可说是一种新的蒙特卡洛法。它比起传统的蒙特卡洛模拟有以下几个特点:?(1)它能保持变量的空间自相关函数(即指协方差图数或变差函数)不变,因而更适用于区域化变量的模拟;(2)它能使观测点处的模拟恒等于实测值,因而,观测点越多,则模拟就越接近客观实际;?条件模拟在地质统计学中占有一个很重要的位置,它与克立格估计配合使用,可以解决地质、石油、矿业中的许多实际问题。条件模拟的基本原理和方法设Z(x)为满足二阶平稳假设的区域化变量,EZ(x)=m,并存在协方差函数C(h)及变差函数(h)。要想求Z(x)的条件模拟Zsc(x),就是要找出与z(x)同

4、构的区域化变量Zsc(x)的一个现实,且在实测点xa上模拟值等于实测值,即:Zsc(xa)=Z(xa)注:所谓Zsc(x)与Z(x)同构,是指它们有相同的数学期望和相同的分布直方图(或频率密度曲线),以及相同的C(h)或(h)。如何求得条件模拟Zsc(x)的计算公式呢?-需要引入克立格估值和非条件模拟Zs(x)Z(x)在任一点x处的真实值Z(x)可表为其克立格估值与其误差之和,即Z(x)=Zk*(x)+Z(x)-Z*k(x)=Zk*(x)+R(x)其中误差R(x)是未知的。可以证明(略),只要用一个与此误差同构且独立的非条件模拟的克立格误差Zs(x)-Z*sk(x)来代替上述未知克立格误差Z(

5、x)-Z*k(x),就可得到条件模拟Zcs(x)的计算公式:Zsc(x)=Zk*(x)+Zs(x)-Z*sk(x)线性地质统计学(王仁铎等)一旦生成了非条件模拟,就可在有数据的位置处进行采样,再用它们进行克里格内插估值,进而比较内插结果与非条件模拟的差异,该差异加上根据实际数据进行内插后的结果就是一个条件模拟。它不仅具有正确的空间变异性,而且正好也忠实于观察的实际值。随机建模和地质统计学:原理、方法和实例研究ESE方法(估计加模拟误差法)用于模拟孔隙度的例子地统插值该例中,非条件模拟是由白噪的加权滑动平均生成的。地统插值随机建模和地质统计学:原理、方法和实例研究条件模拟计算公式的另一种比较实用

6、的表示法:条件模拟计算公式的另一种比较实用的表示法:由于Zs(x)与Z(x)有相同的变差函数,且求克立格估值Z*sk(x)与Z*k(x)时数据构形又相同,故其克立格方程组也一样。方程组的解也一样,即有相同的权系数a,a=1,2,,n。于是:Z(x)?aZ(xa)*ka?1*kn,Z(x)?aZs(xa)*ska?1*sknZsc?Z(x)?Zs(x)?Z(x)?Zs(x)?aZ(xa)?Zs(xa)a?1n因此,要计算条件模拟Zsc(x),先要求出一个非条件模拟值Zs(x),再对实测点xa上的差值Z(xa)-Zs(xa),a=1,2,n进行克里格估计,最后再把这二者相加,即可得Zsc(x)。该

7、公式比较更为简单、实用,可减少一次解克立格方程组的运算。线性地质统计学(王仁铎等)常见的随机模拟方法常见的随机模拟方法?序贯模拟Sequential Simulation?Sequential Gaussian Simulation Sequential Indicator Simulation Gaussian Truncated SimulationSequential Indicator Simulation?布尔模拟Boolean Simulation估计加模拟误差ESE?转向带模拟分形模拟?模拟退火Simulated Annealing概率场模拟Probability Field S

8、imulation LU矩阵分解模拟LU Simulation 迭代方法混合方法蒙特卡洛法Monte Carlo Drawing 随机建模和地质统计学:原理、方法和实例研究序贯模拟序贯模拟框架所有的“序贯”方法都采用下图所示的基本算法:?(1)随机地选择一个还没有模拟值的网格节点。(2)估计该处的局部条件概率分布(LCPD)。(3)从局部条件概率分布中随机地抽取一个数值。(4)使刚模拟的数值也作为条件化数据。(5)重复步骤(1)(4),直到所有的网格节点都有一个模拟值为止。随机建模和地质统计学:原理、方法和实例研究各种序贯方法之间的主要区别在于:估计局部条件概率分布的方式估计局部条件概率分布的

9、方式任何一个能够生成局部条件概率分布估计量的方法都可以作为序贯模拟的基础。例如,多元高斯克里格可以产生局部条件概率分布的估计量,它是通过假设该估计量服从经典的钟形正态分布来估计其均值和标准偏差来实现的。如果将多元高斯克里格方法用于序贯模拟方法中,则该算法通常称之为序贯高斯模拟(下图)。又如,指示克里格也可以用于估计局部条件概率分布,采用这种方法时就不用对分布形态作任何假设,它通过直接估计小于一系列门槛值的概率或直接估计属于一系列离散区间的概率等来估计其局部条件概率分布。若将该方法用于序贯模拟,则该算法通常称之为序贯指示模拟。名义型变量的序贯指示模拟孔隙度序贯高斯模拟数据综合的模拟退火法模拟退火法示意图砂、泥岩模型的退火程序:该模型的净毛比为70,泥岩平均长度为 60m,平均厚度为 10m。END

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(完整版地质统计学与随机建模原理4-随机模拟课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|