1、第十节第十节 函数的连续性函数的连续性 与间断点与间断点一、函数的连续性一、函数的连续性二、左连续与右连续二、左连续与右连续三、连续函数与连续区间三、连续函数与连续区间四、函数的间断点四、函数的间断点一、函数的连续性一、函数的连续性1.函数的增量函数的增量.,),(,)()(0000的增量的增量称为自变量在点称为自变量在点内有定义内有定义在在设函数设函数xxxxxUxxUxf .)(),()(0的的增增量量相相应应于于称称为为函函数数xxfxfxfy xy0 xy00 xxx 0)(xfy x 0 xxx 0 x y y)(xfy 2.连续的定义连续的定义定义定义 1 1 设函数设函数)(xf
2、在在)(0 xU 内有定义内有定义,如如果当自变量的增量果当自变量的增量x 趋向于零时趋向于零时,对应的函对应的函数的增量数的增量y 也趋向于零也趋向于零,即即0lim0 yx 或或0)()(lim000 xfxxfx,那末就称函数那末就称函数)(xf在点在点0 x连续连续,0 x称为称为)(xf的连续点的连续点.,0 xxx 设设),()(0 xfxfy ,00 xxx 就是就是).()(00 xfxfy 就是就是定义定义 2 2 设函数设函数)(xf在在)(0 xU 内有定义内有定义,如果如果函数函数)(xf当当0 xx 时的极限存在时的极限存在,且等于它在且等于它在点点0 x处的函数值处
3、的函数值)(0 xf,即即 )()(lim00 xfxfxx 那末就称函数那末就称函数)(xf在点在点0 x连续连续.:定定义义000,0,()().xxf xf x 使使当当时时恒恒有有例例1 1.0,0,0,0,1sin)(处连续处连续在在试证函数试证函数 xxxxxxf证证,01sinlim0 xxx,0)0(f又又由定义由定义2知知.0)(处连续处连续在在函数函数 xxf),0()(lim0fxfx 二、左连续与右连续二、左连续与右连续;)(),()0(,()(0000处左连续处左连续在点在点则称则称且且内有定义内有定义在在若函数若函数xxfxfxfxaxf 定理定理00()().f
4、xxf xx函函数数在在处处连连续续是是函函数数在在处处既既左左连连续续又又右右连连续续.)(),()0(,),)(0000处右连续处右连续在点在点则称则称且且内有定义内有定义在在若函数若函数xxfxfxfbxxf 例例2 2.0,0,2,0,2)(连续性连续性处的处的在在讨论函数讨论函数 xxxxxxf解解)2(lim)(lim00 xxfxx2),0(f)2(lim)(lim00 xxfxx2 ),0(f 右连续但不左连续右连续但不左连续,.0)(处不连续处不连续在点在点故函数故函数 xxf三、连续函数与连续区间三、连续函数与连续区间在区间上每一点都连续的函数在区间上每一点都连续的函数,叫
5、做在该区间上叫做在该区间上的的连续函数连续函数,或者说函数在该区间上连续或者说函数在该区间上连续.,)(,),(上连续上连续在闭区间在闭区间函数函数则称则称处左连续处左连续在右端点在右端点处右连续处右连续并且在左端点并且在左端点内连续内连续如果函数在开区间如果函数在开区间baxfbxaxba 连续函数的图形是一条连续而不间断的曲线连续函数的图形是一条连续而不间断的曲线.例如例如,.),(内是连续的内是连续的有理函数在区间有理函数在区间例例3 3.),(sin内内连连续续在在区区间间函函数数证证明明 xy证证),(x任取任取xxxysin)sin()2cos(2sin2xxx ,1)2cos(x
6、x.2sin2xy 则则,0,时时当当对任意的对任意的 ,sin 有有,2sin2xxy 故故.0,0 yx时时当当.),(sin都是连续的都是连续的对任意对任意函数函数即即 xxy四、函数的间断点四、函数的间断点0():f xx函函数数在在点点 处处连连续续必必须须满满足足的的三三个个条条件件;)()1(0处处有有定定义义在在点点xxf;)(lim)2(0存在存在xfxx).()(lim)3(00 xfxfxx).()(),()(,00或间断点或间断点的不连续点的不连续点为为并称点并称点或间断或间断处不连续处不连续在点在点函数函数则称则称要有一个不满足要有一个不满足如果上述三个条件中只如果上
7、述三个条件中只xfxxxf1.跳跃间断点跳跃间断点.)(),0()0(,)(0000的跳跃间断点的跳跃间断点为函数为函数则称点则称点但但存在存在右极限都右极限都处左处左在点在点如果如果xfxxfxfxxf 例例4 4.0,0,1,0,)(处的连续性处的连续性在在讨论函数讨论函数 xxxxxxf解解,0)00(f,1)00(f),00()00(ff.0为函数的跳跃间断点为函数的跳跃间断点 xoxy2.可去间断点可去间断点.)()(),()(lim,)(00000的可去间断点的可去间断点为函数为函数义则称点义则称点处无定处无定在点在点或或但但处的极限存在处的极限存在在点在点如果如果xfxxxfxf
8、Axfxxfxx 例例5 5.1,1,11,10,1,2)(处的连续性处的连续性在在讨论函数讨论函数 xxxxxxxfoxy112xy 1xy2 解解,1)1(f,2)01(f,2)01(f2)(lim1 xfx),1(f.0为函数的可去间断点为函数的可去间断点 x注意注意 可去间断点只要改变或者补充间断处函可去间断点只要改变或者补充间断处函数的定义数的定义,则可使其变为连续点则可使其变为连续点.如例如例5中中,2)1(f令令.1,1,1,10,2)(处连续处连续在在则则 xxxxxxf跳跃间断点与可去间断点统称为第一类间断点跳跃间断点与可去间断点统称为第一类间断点.特点特点.0处处的的左左、
9、右右极极限限都都存存在在函函数数在在点点 xoxy1123.第二类间断点第二类间断点.)(,)(00的第二类间断点的第二类间断点为函数为函数则称点则称点在在右极限至少有一个不存右极限至少有一个不存处的左、处的左、在点在点如果如果xfxxxf例例6 6.0,0,0,1)(处的连续性处的连续性在在讨论函数讨论函数 xxxxxxf解解oxy,0)00(f,)00(f.1为函数的第二类间断点为函数的第二类间断点 x.断点断点这种情况称为无穷间这种情况称为无穷间例例7 7.01sin)(处的连续性处的连续性在在讨论函数讨论函数 xxxf解解xy1sin,0处没有定义处没有定义在在 x.1sinlim0不
10、存在不存在且且xx.0为第二类间断点为第二类间断点 x.断点断点这种情况称为的振荡间这种情况称为的振荡间注意注意 不要以为函数的间断点只是个别的几个点不要以为函数的间断点只是个别的几个点.,0,1)(是无理数时是无理数时当当是有理数时是有理数时当当xxxDy狄利克雷函数狄利克雷函数在定义域在定义域R内每一点处都间断内每一点处都间断,且都是第二类间且都是第二类间断点断点.,(),xxf xxx 当当 是是有有理理数数时时当当 是是无无理理数数时时仅在仅在x=0处连续处连续,其余各点处处间断其余各点处处间断.o1x2x3xyx xfy 1,()1,xf xx 当当 是是有有理理数数时时当当 是是无
11、无理理数数时时在定义域在定义域 R内每一点处都间断内每一点处都间断,但其绝对值处但其绝对值处处连续处连续.判断下列间断点类型判断下列间断点类型:例例8 8.0,0,0,cos)(,处连续处连续在在函数函数取何值时取何值时当当 xxxaxxxfa解解xxfxxcoslim)(lim00 ,1)(lim)(lim00 xaxfxx ,a,)0(af),0()00()00(fff 要使要使,1时时故当且仅当故当且仅当 a.0)(处连续处连续在在函数函数 xxf,1 a小小 结结1.函数在一点连续必须满足的三个条件函数在一点连续必须满足的三个条件;3.间断点的分类与判别间断点的分类与判别;2.区间上的
12、连续函数区间上的连续函数;第一类间断点第一类间断点:可去型可去型,跳跃型跳跃型.第二类间断点第二类间断点:无穷型无穷型,振荡型振荡型.间断点间断点(见下图见下图)可去型可去型第一类间断点第一类间断点oyx跳跃型跳跃型无穷型无穷型振荡型振荡型第二类间断点第二类间断点oyx0 xoyx0 xoyx0 x思考题思考题 若若)(xf在在0 x连连续续,则则|)(|xf、)(2xf在在0 x是是否否连连续续?又又若若|)(|xf、)(2xf在在0 x连连续续,)(xf在在0 x是是否否连连续续?思考题解答思考题解答)(xf在在0 x连续,连续,)()(lim00 xfxfxx)()()()(000 xf
13、xfxfxf 且且)()(lim00 xfxfxx )(lim)(lim)(lim0002xfxfxfxxxxxx)(02xf 故故|)(|xf、)(2xf在在0 x都连续都连续.但反之不成立但反之不成立.例例 0,10,1)(xxxf在在00 x不不连连续续但但|)(|xf、)(2xf在在00 x连连续续一、一、填空题:填空题:1 1、指出指出23122 xxxy 在在1 x是第是第_类间类间断点;在断点;在2 x是第是第_类间断点类间断点.2 2、指出指出)1(22 xxxxy在在0 x是第是第_类间类间断点;在断点;在1 x是第是第_类间断点;在类间断点;在1 x是第是第_类间断点类间断
14、点.二、二、研究函数研究函数 1,11,)(xxxxf的连续性,并画出函数的连续性,并画出函数 的图形的图形.练练 习习 题题三、三、指出下列函数在指定范围内的间断点,并说明这些指出下列函数在指定范围内的间断点,并说明这些间断点的类型,如果是可去间断点,则补充或改变间断点的类型,如果是可去间断点,则补充或改变函数的定义使它连续函数的定义使它连续.1 1、1,31,1)(xxxxxf在在Rx 上上 .2 2、xxxftan)(,在在Rx 上上 .四、四、讨论函数讨论函数 nnnxxxf2211lim)(的连续性,若有间断的连续性,若有间断点,判断其类型点,判断其类型.五、试确定五、试确定ba,的
15、值的值,使使)1)()(xaxbexfx,(1 1)有无穷间断点)有无穷间断点0 x;(2 2)有可去间断点)有可去间断点1 x.一、一、1 1、一类、一类,二类;二类;2 2、一类、一类,一类一类,二类二类.二、二、,),1()1,()(内连续内连续与与在在 xf1 x为跳跃间为跳跃间 断点断点.三、三、1 1、1 x为第一类间断点;为第一类间断点;2 2、,2为可去间断点为可去间断点 kx )0(kkx为第二类间断点为第二类间断点.0,12,tan)(1xkkxxxxf ),2,1,0(k,练习题答案练习题答案),2,1,0(2,02,tan)(2 kkxkkxxxxf.四、四、1,0,01,)(xxxxxxf1 x和和1 x为第一类间断点为第一类间断点.五、五、(1)(1);1,0 ba (2)(2)eba ,1.