1、3.6 受约束回归受约束回归 在建立回归模型时,有时根据经济理论需对模型中变量的参数施加一定的约束条件。如:0阶齐次性阶齐次性 条件的消费需求函数 1阶齐次性阶齐次性 条件的C-D生产函数 模型施加约束条件后进行回归模型施加约束条件后进行回归,称为受约束受约束回归回归(restricted regression);不加任何约束的回归称不加任何约束的回归称为无约束回归无约束回归(unrestricted regression)。)。3.6 受约束回归受约束回归 例例3.5.1 建立中国城镇居民食品消费需求函数模型。根据需求理论,居民对食品的消费需求函数大致为),(01PPXfQ Q:居民对食品的
2、需求量,X:消费者的消费支出总额P1:食品价格指数,P0:居民消费价格总指数。零阶齐次性零阶齐次性,当所有商品和消费者货币支出总额按同一比例变动时,需求量保持不变)/,/(010PPPXfQ(*)(*)为了进行比较,将同时估计(为了进行比较,将同时估计(*)式与()式与(*)式。)式。根据恩格尔定律恩格尔定律,居民对食品的消费支出与居民的总支出间呈幂函数幂函数的变化关系:首先,确定具体的函数形式32101PPAXQ 对数变换:031210lnlnln)ln(PPXQ考虑到零阶齐次性零阶齐次性时时)/ln()/ln()ln(012010PPPXQ(*)(*)(*)式也可看成是对(*)式施加如下约
3、束而得0321因此,对(对(*)式进行回归,就意味着原需)式进行回归,就意味着原需求函数满足零阶齐次性条件求函数满足零阶齐次性条件。表表 3.5.1 中中国国城城镇镇居居民民消消费费支支出出(元元)及及价价格格指指数数 X(当年价)X1(当年价)GP(上年=100)FP(上年=100)XC(1990年价)Q(1990年价)P0(1990=100)P1(1990=100)1981 456.8 420.4 102.5 102.7 646.1 318.3 70.7 132.1 1982 471.0 432.1 102.0 102.1 659.1 325.0 71.5 132.9 1983 505.9
4、 464.0 102.0 103.7 672.2 337.0 75.3 137.7 1984 559.4 514.3 102.7 104.0 690.4 350.5 81.0 146.7 1985 673.2 351.4 111.9 116.5 772.6 408.4 87.1 86.1 1986 799.0 418.9 107.0 107.2 826.6 437.8 96.7 95.7 1987 884.4 472.9 108.8 112.0 899.4 490.3 98.3 96.5 1988 1104.0 567.0 120.7 125.2 1085.5 613.8 101.7 92.4
5、 1989 1211.0 660.0 116.3 114.4 1262.5 702.2 95.9 94.0 1990 1278.9 693.8 101.3 98.8 1278.9 693.8 100.0 100.0 1991 1453.8 782.5 105.1 105.4 1344.1 731.3 108.2 107.0 1992 1671.7 884.8 108.6 110.7 1459.7 809.5 114.5 109.3 1993 2110.8 1058.2 116.1 116.5 1694.7 943.1 124.6 112.2 1994 2851.3 1422.5 125.0 1
6、34.2 2118.4 1265.6 134.6 112.4 1995 3537.6 1766.0 116.8 123.6 2474.3 1564.3 143.0 112.9 1996 3919.5 1904.7 108.8 107.9 2692.0 1687.9 145.6 112.8 1997 4185.6 1942.6 103.1 100.1 2775.5 1689.6 150.8 115.0 1998 4331.6 1926.9 99.4 96.9 2758.9 1637.2 157.0 117.7 1999 4615.9 1932.1 98.7 95.7 2723.0 1566.8
7、169.5 123.3 2000 4998.0 1958.3 100.8 97.6 2744.8 1529.2 182.1 128.1 2001 5309.0 2014.0 100.7 100.7 2764.0 1539.9 192.1 130.8 X:人均消费X1:人均食品消费GP:居民消费价格指数FP:居民食品消费价格指数XC:人均消费(90年价)Q:人均食品消费(90年价)P0:居民消费价格缩减指数(1990=100)P:居民食品消费价格缩减指数(1990=1002004006008001000120014001600180082848688909294969800Q中中国国城城镇镇居居
8、民民人人均均食食品品消消费费 特征:特征:消费行为在19811995年间表现出较强的一致性1995年之后呈现出另外一种变动特征。建立19811994年中国城镇居民对食品的消费需求模型:)ln(92.0)ln(08.0)ln(05.163.3)ln(01PPXQ (9.03)(25.35)(-2.28)(-7.34)按按零阶齐次性零阶齐次性表达式回归表达式回归:)/ln(09.0)/ln(07.183.3)ln(010PPPXQ (75.86)(52.66)(-3.62)为了比较,改写该式为:01010ln98.0ln09.0ln07.183.3)ln(ln09.0)ln(ln07.183.3l
9、nPPXPPPXQ)ln(92.0)ln(08.0)ln(05.163.3)ln(01PPXQ发现与接近。意味着:所建立的食品需求函数满足零阶齐次性特征所建立的食品需求函数满足零阶齐次性特征3.6 受约束回归受约束回归 在建立回归模型时,有时根据经济理论需对模型中变量的参数施加一定的约束条件。如:0阶齐次性阶齐次性 条件的消费需求函数 1阶齐次性阶齐次性 条件的C-D生产函数 模型施加约束条件后进行回归模型施加约束条件后进行回归,称为受约束受约束回归回归(restricted regression);不加任何约束的回归称不加任何约束的回归称为无约束回归无约束回归(unrestricted re
10、gression)。)。受约束回归受约束回归 一、模型参数的线性约束一、模型参数的线性约束 二、对回归模型增加或减少解释变量二、对回归模型增加或减少解释变量 三、参数的稳定性三、参数的稳定性 *四、非线性约束四、非线性约束 一、模型参数的线性约束一、模型参数的线性约束对模型kkXXXY22110施加约束121kk1得*11121110)1(kkkkXXXXY或*1133*110*kkXXXY(*)(*)如果对(*)式回归得出1310,k则由约束条件可得:1211kk 然而,对所考查的具体问题能否施加约束能否施加约束?需进一步进行相应的检验。常用的检验有常用的检验有:F检验、x2检验与t检验,主
11、要介绍主要介绍F检验检验在同一样本下,记无约束无约束样本回归模型为eXY受约束受约束样本回归模型为*eXY于是)X(eXeXXYe*受约束受约束样本回归模型的残差平方和残差平方和RSSR)X(X)(eeee*于是eeee*ee为无约束无约束样本回归模型的残差平方残差平方和RSSU(*)受约束受约束与无约束无约束模型都有相同的相同的TSS由(*)式 RSSR RSSU从而 ESSR ESSU这意味着这意味着,通常情况下,对模型施加约束通常情况下,对模型施加约束条件会降低模型的解释能力条件会降低模型的解释能力。但是但是,如果如果约束条件约束条件为为真真,则,则受约束受约束回归回归模型与模型与无约束
12、无约束回归模型具有相同的解释能力回归模型具有相同的解释能力,RSSR 与 RSSU的差异变小。可用可用RSSR-RSSU的大小来检验约束的真实性的大小来检验约束的真实性 根据数理统计学的知识:)1(/22UUknRSS)1(/22RRknRSS)(/)(22RUURkkRSSRSS于是:)1,()1/()/()(URUUURUURknkkFknRSSkkRSSRSSF 讨论:讨论:如果约束条件无效,RSSR 与 RSSU的差异较大,计算的F值也较大。于是,可用计算的F统计量的值与所给定的显著性水平下的临界值作比较,对约束条件的真实性进行检验。注意,kU-kR恰为约束条件的个数。例例3.6.13
13、.6.1 中国城镇居民对食品的人均消费需求中国城镇居民对食品的人均消费需求实例中实例中,对零阶齐次性零阶齐次性检验:231.010/003240.01/)003240.0003315.0(F取=5%,查得临界值临界值F0.05(1,10)=4.96 判断:不能拒绝中国城镇居民对食品的人不能拒绝中国城镇居民对食品的人均消费需求函数具有零阶齐次特性这一假设均消费需求函数具有零阶齐次特性这一假设。无约束回归:RSSU=0.00324,kU=3 受约束回归:RSSR=0.00332,KR=2 样本容量n=14,约束条件个数kU-kR=3-2=1这里的这里的F F检验适合所有关于参数线性约束的检验检验适
14、合所有关于参数线性约束的检验如:多元回归中对方程总体线性性方程总体线性性的F检验:H0:j=0 j=1,2,k这里:受约束回归模型为*0Y)1/(/)1/(/)()1/(/)()1/()/()(knRSSkESSknRSSkRSSTSSknRSSkRSSESSTSSknRSSkkRSSRSSFUUUUUURUURUUR这里,运用了ESSR 0。二、对回归模型增加或减少解释变量二、对回归模型增加或减少解释变量考虑如下两个回归模型kkXXY110qkqkkkkkXXXXY11110(*)(*)(*)式可看成是(*)式的受约束回归:受约束回归:H0:021qkkk相应的统计量为:)1(,()1(/(
15、/)()1(/(/)(qknqFqknRSSqESSESSqknRSSqRSSRSSFURUUUR 如果约束条件为真,即额外的变量Xk+1,Xk+q对没有解释能力,则统计量较小;否则,约束条件为假,意味着额外的变量对有较强的解释能力,则统计量较大。因此,可通过F的计算值计算值与临界值临界值的比较,来判断额外变量是否应包括在模型中。讨论:讨论:统计量的另一个等价式统计量的另一个等价式)1(/()1(/)(222qknRqRRFURU 三、参数的稳定性三、参数的稳定性 1 1、邹氏参数稳定性检验、邹氏参数稳定性检验 建立模型时往往希望模型的参数是稳定的,即所谓的结构不变结构不变,这将提高模型的预测
16、与分析功能。如何检验?如何检验?假设需要建立的模型需要建立的模型为kkXXY110在两个连续的时间序列(1,2,,n1)与(n1+1,,n1+n2)中,相应的模型分别为:1110kkXXY2110kkXXY 合并两个时间序列为(1,2,,n1,n1+1,,n1+n2),则可写出如下无约束回无约束回归模型212121X00XYY 如果=,表示没有发生结构变化,因此可针对如下假设进行检验:H0:=(*)式施加上述约束后变换为受约束受约束回归模型(*)212121XXYY(*)因此,检验的F统计量为:)1(2,)1(2/)(2121knnkFknnRSSkRSSRSSFUUR 记RSS1与RSS2为
17、在两时间段上分别回归后所得的残差平方和,容易验证,21RSSRSSRSSU于是)1(2,)1(2/)(/)(21212121knnkFknnRSSRSSkRSSRSSRSSFR参数稳定性的检验步骤:参数稳定性的检验步骤:(1)分别以两连续时间序列作为两个样本进行回归,得到相应的残差平方:RSS1与RSS2 (2)将两序列并为一个大样本后进行回归,得到大样本下的残差平方和RSSR (3)计算F统计量的值,与临界值比较:若F值大于临界值,则拒绝原假设,认为发生了结构变化,参数是非稳定的。该 检 验 也 被 称 为 邹 氏 参 数 稳 定 性 检 验邹 氏 参 数 稳 定 性 检 验(Chow te
18、st for parameter stability)。2 2、邹氏预测检验、邹氏预测检验 上述参数稳定性检验要求n2k。如果出现n2F(n2,n1-k-1),则拒绝原假设,认为预测期发生了结构变化。2004006008001000120014001600180082848688909294969800Q中中国国城城镇镇居居民民人人均均食食品品消消费费 特征:特征:消费行为在19811995年间表现出较强的一致性1995年之后呈现出另外一种变动特征。例例3.6.2 中国城镇居民食品人均消费需求的邹氏检验。例例3.6.2 中国城镇居民食品人均消费需求的邹氏检验。1、参数稳定性检验、参数稳定性检验
19、19811994:)ln(92.0)ln(08.0)ln(05.163.3)ln(01PPXQRSS1=0.003240 19952001:01ln71.0ln06.3ln55.078.13lnPPXQ (9.96)(7.14)(-5.13)(1.81)19812001:01ln39.1ln14.0ln21.100.5lnPPXQ (14.83)(27.26)(-3.24)(-11.17)34.10)821/()000058.0003240.0(4/)0000580.0003240.0(013789.0F 给定=5%,查表得临界值F0.05(4,13)=3.18 判断:判断:F值值临界值,拒绝
20、参数稳定的原假设,表临界值,拒绝参数稳定的原假设,表明中国城镇居民食品人均消费需求在明中国城镇居民食品人均消费需求在1994年前后发年前后发生了显著变化。生了显著变化。2、邹氏预测邹氏预测检验检验65.4)1314/(003240.07/)003240.0013789.0(F给定=5%,查表得临界值F0.05(7,10)=3.18判断判断:F值值临界值,拒绝参数稳定的原假设临界值,拒绝参数稳定的原假设 *四、非线性约束四、非线性约束 也可对模型参数施加非线性约束非线性约束,如对模型kkXXXY22110施加非线性约束12=1,得到受约束回归模型受约束回归模型:*211101kkXXXY 该 模
21、 型 必 需 采 用 非 线 性 最 小 二 乘 法非 线 性 最 小 二 乘 法(nonlinear least squares)进行估计。非线性约束检验非线性约束检验是建立在最大似然原理最大似然原理基础上的,有最大似然比检验最大似然比检验、沃尔德检验沃尔德检验与拉拉格朗日乘数检验格朗日乘数检验.1、最大似然比检验、最大似然比检验(likelihood ratio test,LR)估计估计:无约束回归模型与受约束回归模型,方法方法:最大似然法,检验检验:两个似然函数的值的差异是否“足够”大。记L(,2)为一似然函数:无约束回归无约束回归:Max:),(2L受约束回归受约束回归:Max:),(
22、2L或求极值:)(),(2gL g():以各约束条件为元素的列向量,:以相应拉格朗日乘数为元素的行向量 约束:g()=0 受约束受约束的函数值不会超过的函数值不会超过无约束无约束的函数值的函数值,但如果约束条件为真约束条件为真,则两个函数值就非常“接接近近”。22,L,L 由此,定义似然比似然比(likelihood ratio):如果如果比值很小,说明说明两似然函数值差距较大,则应拒绝拒绝约束条件为真的假设;如果如果比值接近于,说明说明两似然函数值很接近,应接受接受约束条件为真的假设。具体检验具体检验时,由于大样本下:)(),(ln),(ln2222hLLLR h是约束条件的个数。因此:通过
23、通过LR统计量的统计量的 2 2分布特性来进行判断。分布特性来进行判断。在中国城镇居民人均食品消费需求例中国城镇居民人均食品消费需求例中,对零阶零阶齐次性齐次性的检验:LR=-2(38.57-38.73)=0.32 给出=5%、查得临界值临界值 2 20.05(1)(1)3.84,判断判断:LR 2 20.05(1),(1),不拒绝原约束的假设,不拒绝原约束的假设,表明表明:中国城镇居民对食品的人均消费需求函中国城镇居民对食品的人均消费需求函数满足零阶齐次性条件数满足零阶齐次性条件。、沃尔德检验、沃尔德检验(Wald test,W)沃尔德检验中,只须估计无约束模型。如对kkXXXY22110
24、在所有古典假设都成立的条件下,容易证明),(2212121N因此,在1+2=1的约束条件下)1,0(12121Nz记)(2221Xf可建立沃尔德统计量沃尔德统计量:)1()1(2222121W 如果有h个约束条件,可得到h个统计量z1,z2,zh 约束条件为真时,可建立大样本大样本下的服从自由度为h的渐近 2 分布统计量 )(2hWZCZ1 其中,Z为以zi为元素的列向量,C是Z的方差-协方差矩阵。因此,W从总体上测量了无约束回归不满足约束条件的程度。从总体上测量了无约束回归不满足约束条件的程度。对对非线性约束非线性约束,沃尔德统计量,沃尔德统计量W的算法描述要复杂得多。的算法描述要复杂得多。
25、3、拉格朗日乘数检验、拉格朗日乘数检验 拉格朗日乘数检验则只需估计受约束受约束模型.受约束回归是求最大似然法的极值问题:)(),(2gL是拉格朗日乘数行向量,衡量各约束条件对最大似然函数值的影响程度。如果某一约束为真,则该约束条件对最大似然函数值的影响很小,于是,相应的拉格朗日乘数的值应接近于零。因此,拉格朗日乘数检验就是检验某些拉格朗日乘数的值是否“足够大”,如果“足够大”,则拒绝约束条件为真的假设。拉格朗日统计量LM本身是一个关于拉格朗日乘数的复杂的函数,在各约束条件为真的情况下,服从一自由度恰为约束条件个数的渐近2分布。2nRLM n为样本容量,R2为如下被称为辅助回归辅助回归(auxiliary regression)的可决系数:kkRXXXe22110 如果约束是非线性的,辅助回归方程的估计比较复杂,但仍可按(*)式计算LM统计量的值。最后,一般地有最后,一般地有:LMLRW 同样地,如果为线性约束,LM服从一精确的2分布:(*)