数学建模-差分方程课件.ppt

上传人(卖家):晟晟文业 文档编号:4587983 上传时间:2022-12-22 格式:PPT 页数:44 大小:1.08MB
下载 相关 举报
数学建模-差分方程课件.ppt_第1页
第1页 / 共44页
数学建模-差分方程课件.ppt_第2页
第2页 / 共44页
数学建模-差分方程课件.ppt_第3页
第3页 / 共44页
数学建模-差分方程课件.ppt_第4页
第4页 / 共44页
数学建模-差分方程课件.ppt_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、 差分方法不仅广泛用于建立离散的数学模差分方法不仅广泛用于建立离散的数学模型过程中,而且在连续模型化为离散模型型过程中,而且在连续模型化为离散模型的数值计算中也有着十分重要而广泛的应的数值计算中也有着十分重要而广泛的应用。如微分方程与偏微分方程的数值解法。用。如微分方程与偏微分方程的数值解法。今天仅就有关差分方程的知识作简要介绍今天仅就有关差分方程的知识作简要介绍,并介绍几个实例并介绍几个实例.1 市场经济中的蛛网模型市场经济中的蛛网模型2 减肥计划减肥计划节食与运动节食与运动3 差分形式的阻滞增长模型差分形式的阻滞增长模型4 按年龄分组的种群增长按年龄分组的种群增长4 4、差分方程模型、差分

2、方程模型1 市场经济中的蛛网模型市场经济中的蛛网模型问问 题题供大于求供大于求现现象象商品数量与价格的振荡在什么条件下趋向稳定商品数量与价格的振荡在什么条件下趋向稳定当不稳定时政府能采取什么干预手段使之稳定当不稳定时政府能采取什么干预手段使之稳定价格下降价格下降减少产量减少产量增加产量增加产量价格上涨价格上涨供不应求供不应求描述商品数量与价格的变化规律描述商品数量与价格的变化规律数量与价格在振荡数量与价格在振荡蛛蛛 网网 模模 型型gx0y0P0fxy0 xk第第k时段商品数量;时段商品数量;yk第第k时段商品价格时段商品价格消费者的需求关系消费者的需求关系)(kkxfy 生产者的供应关系生产

3、者的供应关系减函数减函数增函数增函数供应函数供应函数需求函数需求函数f与与g的交点的交点P0(x0,y0)平衡点平衡点一旦一旦xk=x0,则,则yk=y0,xk+1,xk+2,=x0,yk+1,yk+2,=y0)(1kkyhx)(1kkxgyxy0fgy0 x0P0设设x1偏离偏离x0 x1x2P2y1P1y2P3P4x3y332211xyxyx0321PPPP00,yyxxkkP0是稳定平衡点是稳定平衡点P1P2P3P4P0是不稳定平衡点是不稳定平衡点gfKKxy0y0 x0P0fg)(kkxfy)(1kkyhx)(1kkxgy00,yyxxkk gfKK曲线斜率曲线斜率蛛蛛 网网 模模 型

4、型0321PPPP)(kkxfy)(1kkyhx在在P0点附近用直线近似曲线点附近用直线近似曲线)0()(00 xxyykk)0()(001yyxxkk)(001xxxxkk)()(0101xxxxkk1P0稳定稳定P0不稳定不稳定0 xxkkxfKgK/1)/1()/1(1方方 程程 模模 型型gfKKgfKK方程模型与蛛网模型的一致方程模型与蛛网模型的一致)(00 xxyykk 商品数量减少商品数量减少1单位单位,价格上涨幅度价格上涨幅度)(001yyxxkk 价格上涨价格上涨1单位单位,(下时段下时段)供应的增量供应的增量考察考察 ,的含义的含义 消费者对需求的敏感程度消费者对需求的敏感

5、程度 生产者对价格的敏感程度生产者对价格的敏感程度 小小,有利于经济稳定有利于经济稳定 小小,有利于经济稳定有利于经济稳定结果解释结果解释xk第第k时段商品数量;时段商品数量;yk第第k时段商品价格时段商品价格1经济稳定经济稳定结果解释结果解释经济不稳定时政府的干预办法经济不稳定时政府的干预办法1.使使 尽量小,如尽量小,如 =0 以行政手段控制价格不变以行政手段控制价格不变2.使使 尽量小,如尽量小,如 =0靠经济实力控制数量不变靠经济实力控制数量不变xy0y0gfxy0 x0gf结果解释结果解释需求曲线变为水平需求曲线变为水平供应曲线变为竖直供应曲线变为竖直2/)(0101yyyxxkkk

6、模型的推广模型的推广 生产者根据当前时段和前一时生产者根据当前时段和前一时段的价格决定下一时段的产量。段的价格决定下一时段的产量。)(00 xxyykk生产者管理水平提高生产者管理水平提高设供应函数为设供应函数为需求函数不变需求函数不变,2,1,)1(22012kxxxxkkk二阶线性常系数差分方程二阶线性常系数差分方程x0为平衡点为平衡点研究平衡点稳定,即研究平衡点稳定,即k,xkx0的条件的条件)(1kkyhx211kkkyyhx48)(22,1012)1(22xxxxkkk方程通解方程通解kkkccx2211(c1,c2由初始条件确定由初始条件确定)1,2特征根,即方程特征根,即方程 的

7、根的根 022平衡点稳定,即平衡点稳定,即k,xkx0的条件的条件:12,12平衡点稳定条件平衡点稳定条件比原来的条件比原来的条件 放宽了放宽了122,1模型的推广模型的推广2 减肥计划减肥计划节食与运动节食与运动背背景景 多数减肥食品达不到减肥目标,或不能维持多数减肥食品达不到减肥目标,或不能维持 通过控制饮食和适当的运动,在不伤害身体通过控制饮食和适当的运动,在不伤害身体的前提下,达到减轻体重并维持下去的目标的前提下,达到减轻体重并维持下去的目标分分析析 体重变化由体内能量守恒破坏引起体重变化由体内能量守恒破坏引起 饮食(吸收热量)引起体重增加饮食(吸收热量)引起体重增加 代谢和运动(消耗

8、热量)引起体重减少代谢和运动(消耗热量)引起体重减少 体重指数体重指数BMI=w(kg)/l2(m2).18.5BMI25 超重超重;BMI30 肥胖肥胖.模型假设模型假设1)体重增加正比于吸收的热量)体重增加正比于吸收的热量每每8000千卡增加体重千卡增加体重1千克;千克;2)代谢引起的体重减少正比于体重)代谢引起的体重减少正比于体重每周每公斤体重消耗每周每公斤体重消耗200千卡千卡 320千卡千卡(因人而异因人而异),相当于相当于70千克的人每天消耗千克的人每天消耗2000千卡千卡 3200千卡;千卡;3)运动引起的体重减少正比于体重,且与运动)运动引起的体重减少正比于体重,且与运动形式有

9、关;形式有关;4)为了安全与健康,每周体重减少不宜超过)为了安全与健康,每周体重减少不宜超过1.5千克,每周吸收热量不要小于千克,每周吸收热量不要小于10000千卡。千卡。某甲体重某甲体重100千克,目前每周吸收千克,目前每周吸收20000千卡热量,千卡热量,体重维持不变。现欲减肥至体重维持不变。现欲减肥至75千克。千克。第一阶段:每周减肥第一阶段:每周减肥1千克,每周吸收热量逐渐减千克,每周吸收热量逐渐减少,直至达到下限(少,直至达到下限(10000千卡);千卡);第二阶段:每周吸收热量保持下限,减肥达到目标第二阶段:每周吸收热量保持下限,减肥达到目标 2)若要加快进程,第二阶段增加运动,试

10、安排计划。)若要加快进程,第二阶段增加运动,试安排计划。1)在不运动的情况下安排一个两阶段计划。)在不运动的情况下安排一个两阶段计划。减肥计划减肥计划3)给出达到目标后维持体重的方案。)给出达到目标后维持体重的方案。)()1()()1(kwkckwkw千卡)千克/(80001 确定某甲的代谢消耗系数确定某甲的代谢消耗系数即每周每千克体重消耗即每周每千克体重消耗 20000/100=200千卡千卡基本模型基本模型w(k)第第k周周(末末)体重体重c(k)第第k周吸收热量周吸收热量 代谢消耗系数代谢消耗系数(因人而异因人而异)1)不运动情况的两阶段减肥计划)不运动情况的两阶段减肥计划每周吸收每周吸

11、收20000千卡千卡 w=100千克不变千克不变wcww025.0100800020000wc 第一阶段第一阶段:w(k)每周减每周减1千克千克,c(k)减至下限减至下限10000千卡千卡1)1()(kwkwk20012000)()1()()1(kwkckwkw第一阶段第一阶段10周周,每周减每周减1千克,第千克,第10周末体重周末体重90千克千克10kkwkw)0()()1(1)0()1(kwkc80001025.09,1,0,20012000)1(kkkc吸收热量为吸收热量为1)不运动情况的两阶段减肥计划)不运动情况的两阶段减肥计划1)(1)1(kwkc10000mC)1()1(1)()1

12、()(1nmnCkwnkw 第二阶段:每周第二阶段:每周c(k)保持保持Cm,w(k)减至减至75千克千克 代入得以10000,80001,025.0mC5050)(975.0)(kwnkwnmmnCCkw)()1(1)不运动情况的两阶段减肥计划)不运动情况的两阶段减肥计划)()1()()1(kwkckwkw基本模型基本模型mCkwkw)()1()1(nnkwkw求,要求已知75)(,90)(50)5090(975.075n 第二阶段:每周第二阶段:每周c(k)保持保持Cm,w(k)减至减至75千克千克 5050)(975.0)(kwnkwn第二阶段第二阶段19周周,每周吸收热量保持每周吸收热

13、量保持10000千卡千卡,体重按体重按 减少至减少至75千克。千克。)19,2,1(50975.040)(nnwn19975.0lg)40/25lg(n)028.0()025.0(t24,003.0tt即取运动运动 t=24(每周每周跳舞跳舞8小时或自行车小时或自行车10小时小时),14周即可。周即可。2)第二阶段增加运动的减肥计划)第二阶段增加运动的减肥计划根据资料每小时每千克体重消耗的热量根据资料每小时每千克体重消耗的热量 (千卡千卡):跑步跑步 跳舞跳舞 乒乓乒乓 自行车自行车(中速中速)游泳游泳(50米米/分分)7.0 3.0 4.4 2.5 7.9t每周运动每周运动时间时间(小时小时

14、)()()1()()1(kwtkckwkw基本基本模型模型6.44)6.4490(972.075n14nmmnCCkwnkw)()1()(3)达到目标体重)达到目标体重75千克后维持不变的方案千克后维持不变的方案)()()1()()1(kwtkckwkw每周吸收热量每周吸收热量c(k)保持某常数保持某常数C,使体重,使体重w不变不变wtCww)(wtC)()(1500075025.08000千卡C 不运动不运动)(1680075028.08000千卡C 运动运动(内容同前内容同前)1()(Nxrxtx,2,1),1(1kNyryyykkkk3 差分形式的阻滞增长模型差分形式的阻滞增长模型连续形

15、式连续形式的阻滞增长模型的阻滞增长模型(Logistic模型模型)t,xN,x=N是是稳定平衡点稳定平衡点(与与r大小无关大小无关)离散离散形式形式x(t)某种群某种群 t 时刻的数量时刻的数量(人口人口)yk 某种群第某种群第k代的数量代的数量(人口人口)若若yk=N,则则yk+1,yk+2,=N讨论平衡点的稳定性,即讨论平衡点的稳定性,即k,ykN?y*=N 是平衡点是平衡点kkyNrrx)1(1rb记)1()1(1Nyryyykkkk离散形式阻滞增长模型的平衡点及其稳定性离散形式阻滞增长模型的平衡点及其稳定性kkkyNrryry)1(1)1(1)2()1(1kkkxbxx一阶一阶(非线性

16、非线性)差分方程差分方程(1)的平衡点的平衡点y*=N讨论讨论 x*的稳定性的稳定性变量变量代换代换(2)的平衡点的平衡点brrx111*(1)的平衡点的平衡点 x*代数方程代数方程 x=f(x)的根的根稳定性判断稳定性判断)2()()(*1xxxfxfxkk(1)的近似线性方程的近似线性方程x*也是也是(2)的平衡点的平衡点1)(*xfx*是是(2)和和(1)的稳定平衡点的稳定平衡点1)(*xfx*是是(2)和和(1)的不稳定平衡点的不稳定平衡点补充知识补充知识一阶非线性差分方程一阶非线性差分方程)1()(1kkxfx的平衡点及稳定性的平衡点及稳定性)21()(*xbxf1)(*xf0yxx

17、y)(xfy 4/b*x2/11)1()(xbxxfx)1(1kkkxbxx的平衡点及其稳定性的平衡点及其稳定性平衡点平衡点bx11*稳定性稳定性31 b2/1/11*bx*xxk(单调增)0 x1x1x2xx*稳定稳定21)1(b)1)(3*xfbx*不稳定不稳定另一平衡另一平衡点为点为 x=01 rb1)0(bf不稳定不稳定b 23)3(b01/21y4/bxy)(xfy 0 x1x*x2xx32)2(b2/1/11*bx*xxk(振荡地)y0 xxy)(xfy 0 x1x2x*x2/114/b*xxk(不))1(1kkkxbxx的平衡点及其稳定性的平衡点及其稳定性)1(1kkkxbxx初

18、值初值 x0=0.2数值计算结果数值计算结果bx11*b 3.57,不存在任何收敛子序列不存在任何收敛子序列混沌现象混沌现象4倍周期收敛倍周期收敛)1(1kkkxbxx的收敛、分岔及混沌现象的收敛、分岔及混沌现象b7.4 按年龄分组的种群增长按年龄分组的种群增长 不同年龄组的繁殖率和死亡率不同不同年龄组的繁殖率和死亡率不同 建立差分方程模型,讨论稳定状况下种群的增长规律建立差分方程模型,讨论稳定状况下种群的增长规律假设与建模假设与建模 种群按年龄大小等分为种群按年龄大小等分为n个年龄组,记个年龄组,记i=1,2,n 时间离散为时段,长度与年龄组区间相等,记时间离散为时段,长度与年龄组区间相等,

19、记k=1,2,以雌性个体数量为对象以雌性个体数量为对象 第第i 年龄组年龄组1雌性个体在雌性个体在1时段内的时段内的繁殖率繁殖率为为bi 第第i 年龄组在年龄组在1时段内的死亡率为时段内的死亡率为di,存活率存活率为为si=1-di1,2,1),()1(1nikxskxiii假设假设与与建模建模xi(k)时段时段k第第i 年龄组的种群数量年龄组的种群数量)()1(kLxkx)0()(xLkxkTnkxkxkxkx)(),(),()(21按年龄组的分布向量按年龄组的分布向量预测任意时段种群预测任意时段种群按年龄组的分布按年龄组的分布000000121121nnnsssbbbbLLeslie矩阵矩

20、阵(L矩阵矩阵)()1(11kxbkxinii(设至少设至少1个个bi0)稳定状态分析的数学知识稳定状态分析的数学知识nkk,3,2,1 L矩阵存在矩阵存在正单特征根正单特征根 1,若若L矩阵存在矩阵存在bi,bi+10,则则 nkk,3,2,1)0()(xLkxk11),(PdiagPLnP的第的第1列是列是x*)0()0,0,1()(lim11xPPdiagkxkkTnnssssssx11121212111*,1特征向量特征向量*1)(limcxkxkk,c是由是由bi,si,x(0)决定的常数决定的常数 且且解解释释L对角化对角化11),(PdiagPLknkk*cx*)()1xckxk

21、)()1()2kxkx稳态分析稳态分析k充分大充分大种群按年龄组的分布种群按年龄组的分布*1)(limcxkxkk 种群按年龄组的分布趋向稳定,种群按年龄组的分布趋向稳定,x*称稳定分布称稳定分布,与初始分布无关。与初始分布无关。各年龄组种群数量按同一各年龄组种群数量按同一倍数增减,倍数增减,称固有增长率称固有增长率Tnssssssx121211*,1)()1(kxkxii)()1(kLxkx与基本模型与基本模型比较比较3)=1时时*)()1(cxkxkx 各年龄组各年龄组种群种群数量不变数量不变 1个个体在整个存活个个体在整个存活期内的繁殖数量为期内的繁殖数量为11121121nnsssbsbb稳态分析稳态分析Tnssssx,1 1211*,)()4*xckxk存活率存活率 si是同一时段的是同一时段的 xi+1与与 xi之比之比(与(与si 的定义的定义 比较)比较))()1(1kxskxiii1,2,1),()(1nikxskxiii3)=1时时*xLx Tnssssssx121211*,1000000121121nnnsssbbbbL

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(数学建模-差分方程课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|