第26章二次函数总复习课件.ppt

上传人(卖家):晟晟文业 文档编号:4607884 上传时间:2022-12-24 格式:PPT 页数:42 大小:1.23MB
下载 相关 举报
第26章二次函数总复习课件.ppt_第1页
第1页 / 共42页
第26章二次函数总复习课件.ppt_第2页
第2页 / 共42页
第26章二次函数总复习课件.ppt_第3页
第3页 / 共42页
第26章二次函数总复习课件.ppt_第4页
第4页 / 共42页
第26章二次函数总复习课件.ppt_第5页
第5页 / 共42页
点击查看更多>>
资源描述

1、一、一、定义定义二、二、图象特点图象特点 和性质和性质三、三、解析式的求法解析式的求法四、四、图象位置与图象位置与a、b、c、的的正负关系正负关系返回主页一般地,如果一般地,如果 y=ax2+bx+c(a,b,c 是常数,是常数,a0),那么,那么,y叫做叫做x的的二次函数二次函数。返回主页返回目录返回目录一、一、定义定义二、二、图象特点图象特点 和性质和性质三、三、解析式的求法解析式的求法四、四、图象位置与图象位置与a、b、c、的的正负关系正负关系1.特殊的二次函数特殊的二次函数 y=ax2(a0)0)的图象特点和函数性质的图象特点和函数性质返回主页前进前进一、一、定义定义二、二、图象特点图

2、象特点 和性质和性质四、四、图象位置与图象位置与a、b、c、的的正负关系正负关系三、三、解析式的求法解析式的求法(1)是一条抛物线;是一条抛物线;(2)对称轴是对称轴是y轴;轴;(3)顶点在原点;顶点在原点;(4)开口方向开口方向:a0时时,开口向上;开口向上;a0时,时,y轴左侧,函轴左侧,函数值数值y随随x的增大而减小的增大而减小;y轴右侧,函数值轴右侧,函数值y随随x的增大而的增大而增大增大。a0时,时,ymin=0 a0时时,开口向上;开口向上;a0时,对称轴左侧时,对称轴左侧(x-),函数值,函数值y随随x的增大而的增大而增大增大。a0时,对称轴左侧时,对称轴左侧(x-),函数值,函

3、数值y随随x的增大而的增大而减小减小。(2)a0时,时,ymin=a0a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00该抛物线与x轴一定有两个交点(2)解:抛物线与x轴相交时 x2-2x-8=0解方程得:x1=4,x2=-2AB=4-(-2

4、)=6而P点坐标是(1,-9)SABC=27xyABP前进前进xyOAxyOBxyOCxyOD 例例3:在同一直角坐标系中,一次函数在同一直角坐标系中,一次函数y=ax+c和二次函数和二次函数y=ax2+c的图象大致为的图象大致为(二二)根据函数性质判定函数图象根据函数性质判定函数图象之间的位置关系之间的位置关系答案答案:B前进前进 例例4、已知二次函数、已知二次函数y=ax2+bx+c的最的最大值是大值是2,图象顶点在直线,图象顶点在直线y=x+1上,并上,并且图象经过点(且图象经过点(3,-6)。求)。求a、b、c。解:解:二次函数的最大值是二次函数的最大值是2抛物线的顶点纵坐标为抛物线的

5、顶点纵坐标为2又又抛物线的顶点在直线抛物线的顶点在直线y=x+1上上当当y=2时,时,x=1 顶点坐标为(顶点坐标为(1,2)设二次函数的解析式为设二次函数的解析式为y=a(x-1)2+2又又图象经过点(图象经过点(3,-6)-6=a(3-1)2+2 a=-2二次函数的解析式为二次函数的解析式为y=-2(x-1)2+2即:即:y=-2x2+4x(三三)根据函数性质求函数解析式根据函数性质求函数解析式前进前进例例5:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求M

6、AB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232(四四)二次函数综合应用二次函数综合应用前进前进例例5:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点)求抛物线开口方向,对称轴和顶点M的坐标。的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解:(1)a=0 抛物线的开口向上抛

7、物线的开口向上 y=(x2+2x+1)-2=(x+1)2-2 对称轴对称轴x=-1,顶点坐标,顶点坐标M(-1,-2)121212前进前进例例5:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与)设抛物线与y轴交于轴交于C点,与点,与x轴交于轴交于A、B两点,求两点,求C,A,B的坐标。的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解:(2)由由x=0,得,得y=-抛物线与抛物线与y轴的交点轴的交点C(0,-)由

8、由y=0,得,得x2+x-=0 x1=-3 x2=1 与与x轴交点轴交点A(-3,0)B(1,0)32323212前进前进例例5:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解0 xy(3)连线连线画对称轴画对称轴x=-1确定顶点确定顶点(-1,-2)(0,-)确定与坐标轴的交点确定与坐标轴的

9、交点及对称点及对称点(-3,0)(1,0)3 2前进前进例例5:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求)求MAB的周长及面积。的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解0M(-1,-2)C(0,-)A(-3,0)B(1,0)3 2yxD:(4)由对称性可知)由对称性可知MA=MB=22+22=22AB=|x1-x2|=4 MAB的周长的周长=2MA+AB=

10、2 22+4=4 2+4MAB的面积的面积=ABMD=42=41212前进前进例例5:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,为何值时,y随的增大而减小,随的增大而减小,x为何值时,为何值时,y有最大有最大 (小)值,这个最大(小)值是多少?(小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解解解0 xx=-1(0,-)(-3,0)(1,0)3 2:(5)(-1,-2)当当x=-1时,时,y有最小值为

11、有最小值为y最小值最小值=-2当当x-1时,时,y随随x的增大的增大而减小而减小;前进前进例例5:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,为何值时,y0?1232解解:0(-1,-2)(0,-)(-3,0)(1,0)3 2yx由图象可知由图象可知(6)当当x1时,时,y 0当当-3 x 1时,时,y 0返回主页返回主页巩固练习巩

12、固练习:1、填空:、填空:(1)二次函数)二次函数y=x2-x-6的图象顶点坐标的图象顶点坐标是是_对称轴是对称轴是_。(2)抛物线抛物线y=-2x2+4x与与x轴的交点坐标轴的交点坐标是是_(3)已知函数)已知函数y=x2-x-4,当函数值,当函数值y随随x的增大而减小时,的增大而减小时,x的取值范围是的取值范围是_(4)二次函数)二次函数y=mx2-3x+2m-m2的图象的图象经过原点,则经过原点,则m=_。12(,-)125 24x=12(0,0)(2,0)x122.2.选择选择(1)抛物线抛物线y=x2-4x+3的对称轴是的对称轴是_.A 直线直线x=1 B直线直线x=-1 C 直线直

13、线x=2 D直线直线x=-2(2)抛物线抛物线y=3x2-1的的_ A 开口向上开口向上,有最高点有最高点 B 开口向上开口向上,有最低点有最低点 C 开口向下开口向下,有最高点有最高点 D 开口向下开口向下,有最低点有最低点(3)若若y=ax2+bx+c(a 0)与轴交于点与轴交于点A(2,0),B(4,0),则对称轴是则对称轴是_ A 直线直线x=2 B直线直线x=4 C 直线直线x=3 D直线直线x=-3(4)若若y=ax2+bx+c(a 0)与轴交于点与轴交于点A(2,m),B(4,m),则对称轴是则对称轴是_ A 直线直线x=3 B 直线直线x=4 C 直线直线x=-3 D直线直线x

14、=2c cB BCA A3、解答题:、解答题:已知二次函数的图象的顶点坐标为(2,3),且图象过点(3,2)。(1)求此二次函数的解析式;(2)设此二次函数的图象与x轴交于A,B两点,O为坐标原点,求线段OA,OB的长度之和。能力训练能力训练 1、二次函数的图象如图所示,则在下列各不等式二次函数的图象如图所示,则在下列各不等式中成立的个数是中成立的个数是_1-10 xyabc0 a+b+c b2a+b=0 =b-4ac 02、已知二次函数、已知二次函数y=ax2-5x+c的图象如图。的图象如图。(1)、当、当x为何值时,为何值时,y随随x的增大而增大的增大而增大;(2)、当、当x为何值时,为何

15、值时,y0。yOx(3)、求它的解析式和顶点坐标;、求它的解析式和顶点坐标;3、已知一个二次函数的图象经过点(、已知一个二次函数的图象经过点(0,0),),(1,3),(),(2,8)。)。(1)求这个二次函数的解析式;)求这个二次函数的解析式;(2)写出它的对称轴和顶点坐标。)写出它的对称轴和顶点坐标。归纳小结:归纳小结:(1)二次函数)二次函数y=ax2+bx+c及抛物线的性质和应用及抛物线的性质和应用 注意:图象的递增性,以及利用图象求自变量注意:图象的递增性,以及利用图象求自变量x或函或函数值数值y的取值范围的取值范围返回返回 (2)a,b,c,的正负与图象的位置关系的正负与图象的位置关系 注意:图象与轴有两个交点注意:图象与轴有两个交点A(x1,0),),B(x2,0)时)时AB=|x2-x1|=(x1+x2)2+4x1 x2=这一结论及推导过程。这一结论及推导过程。|a|制作人:彭鑫制作人:彭鑫

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第26章二次函数总复习课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|