第一讲DEA模型课件.ppt

上传人(卖家):晟晟文业 文档编号:4622642 上传时间:2022-12-26 格式:PPT 页数:45 大小:412KB
下载 相关 举报
第一讲DEA模型课件.ppt_第1页
第1页 / 共45页
第一讲DEA模型课件.ppt_第2页
第2页 / 共45页
第一讲DEA模型课件.ppt_第3页
第3页 / 共45页
第一讲DEA模型课件.ppt_第4页
第4页 / 共45页
第一讲DEA模型课件.ppt_第5页
第5页 / 共45页
点击查看更多>>
资源描述

1、1第一讲第一讲 评价相对有效性的评价相对有效性的DEA模型模型 运筹学的新领域运筹学的新领域 1978年由著名的运筹学家年由著名的运筹学家A.Charnes(查恩斯查恩斯),W.W.Cooper(库伯库伯),及及E.Rhodes(罗兹罗兹)首先提出了一个被称首先提出了一个被称为数据包络分析(为数据包络分析(Data Envelopment analysis,简称简称DEA模模型型)的方法,用于评价相同部门间的相对有效性(因此被)的方法,用于评价相同部门间的相对有效性(因此被称为称为DEA有效)有效).他们的第一个模型被命名为他们的第一个模型被命名为C2R模型模型.从生从生产函数的角度看产函数的

2、角度看,这一模型是用来研究具有多个输入这一模型是用来研究具有多个输入,特别是特别是具有多个输出的具有多个输出的“生产部门生产部门”同时为同时为“规模有效规模有效”与与“技技术有效术有效”的十分理想且卓有成效的方法的十分理想且卓有成效的方法.1985年查恩斯年查恩斯,库伯库伯,格拉尼格拉尼(B.Golany),赛福德赛福德(L.Seiford)和斯图茨和斯图茨(J.Stutz)给出给出另一个模型另一个模型(称为称为C2GS2模型模型),这一模型用来研究生产部门这一模型用来研究生产部门间的间的“技术有效性技术有效性”.2 1987年查恩斯年查恩斯,库伯库伯,魏权龄和黄志明又得到了称为锥比魏权龄和黄

3、志明又得到了称为锥比率的数据包络模型率的数据包络模型C2WH模型。这一模型可用来处理模型。这一模型可用来处理具有过多的输入及输出的情况具有过多的输入及输出的情况,而且锥的选取可以体现决策而且锥的选取可以体现决策者的者的“偏好偏好”.灵活地应用这一模型灵活地应用这一模型,可以将可以将C2R模型中确定模型中确定出的出的DEA有效决策单元进行分类或排队有效决策单元进行分类或排队.数据包络分析是运筹学的一个新的研究领域数据包络分析是运筹学的一个新的研究领域.查恩斯和查恩斯和库伯等人的第一个应用库伯等人的第一个应用DEA的十分成功的案例的十分成功的案例,就是评价为就是评价为弱智儿童开设公立学校项目的效果

4、弱智儿童开设公立学校项目的效果.在评估中在评估中,输出包括输出包括“自自尊尊”等无形的指标等无形的指标;输入包括父母的照料和父母的文化程度输入包括父母的照料和父母的文化程度等等,无论哪种指标都有无法与市场价格相比较无论哪种指标都有无法与市场价格相比较,也难以轻易定也难以轻易定出适当的权重出适当的权重(权系数权系数),这也是这也是DEA的优点之一的优点之一.DEA的优点吸引众多的应用者的优点吸引众多的应用者,应用范围已扩展到美国应用范围已扩展到美国军用飞机的飞行军用飞机的飞行,基地维修与保养基地维修与保养,以及陆军征兵以及陆军征兵,城市城市,银行银行 3等方面等方面.目前目前,这一方法应用的领域

5、在不断地扩大这一方法应用的领域在不断地扩大.它也可以用它也可以用来研究多种方案之间的相对有效性来研究多种方案之间的相对有效性(例如投资项目的评价例如投资项目的评价);研究在决策之前去预测一旦做出决策后它的相对效果如何研究在决策之前去预测一旦做出决策后它的相对效果如何(例如建立新厂后例如建立新厂后,新厂相对于已有的一些工厂是否为有效新厂相对于已有的一些工厂是否为有效).DEA是对其决策单元(同类型的企业或部门)的投入规模是对其决策单元(同类型的企业或部门)的投入规模、技术有效性作出评价,即对各同类型的企业投入一定数、技术有效性作出评价,即对各同类型的企业投入一定数量的资金、劳动力等资源后,其产出

6、的效益(经济效益和量的资金、劳动力等资源后,其产出的效益(经济效益和社会效益)作一个相对有效性评价。社会效益)作一个相对有效性评价。为了说明为了说明DEA模型的建模思路,我们看下面的例模型的建模思路,我们看下面的例子子4 例例1:某公司有甲、乙、丙三个企业,为评价这几个企某公司有甲、乙、丙三个企业,为评价这几个企业的生产效率,收集到反映其投入(固定资产年净值业的生产效率,收集到反映其投入(固定资产年净值x1、流动资金流动资金x2、职工人数职工人数x3)和产出(总产值和产出(总产值y1、利税总额利税总额y2)的有关数据如下表的有关数据如下表 企业指标甲乙丙x1(万元)41527x2(万元)154

7、5x3(万元)825y1(万元)602224y2(万元)1268 由于投入指标和产出指标都不止一个,故通常采用加由于投入指标和产出指标都不止一个,故通常采用加权的办法来综合投入指标值和产出指标值。权的办法来综合投入指标值和产出指标值。5对于第一个企业,产出综合值为对于第一个企业,产出综合值为60u1+12u2,投入综合值投入综合值4v1+15v2+8v3,其中其中u1 u2 v1 v2 v3分别为产出与投入的权重系分别为产出与投入的权重系数。数。我们定义第一个企业的生产效率为:我们定义第一个企业的生产效率为:总产出与总投入的比总产出与总投入的比即即vvvuuh32121181541260类似,

8、可知第二、第三个企业的生产效率分别为:类似,可知第二、第三个企业的生产效率分别为:vvvuuh3212122415622vvvuuh45278243212136我们限定所有的我们限定所有的hj值不超过值不超过1,即,即 ,这意味着,这意味着,若第若第k个企业个企业hk=1,则该企业相对于其他企业来说生产率最则该企业相对于其他企业来说生产率最高,或者说这一生产系统是相对有效的,若高,或者说这一生产系统是相对有效的,若hk1,那么该那么该企业相对于其他企业来说,生产效率还有待于提高,或者企业相对于其他企业来说,生产效率还有待于提高,或者说这一生产系统还不是有效的。说这一生产系统还不是有效的。1ma

9、xhj即即因此,建立第一个企业的生产效率最高的优化模型如下:因此,建立第一个企业的生产效率最高的优化模型如下:这是一个分式规划,需要这是一个分式规划,需要将它化为线性规划才能求将它化为线性规划才能求解。解。vvvuuh32121181541260max12415622321212vvvuuh14527824321213vvvuuh181541260321211vvvuuh7设设vvvt32181541vtwutiiii,则此分式规划可化为如下的则此分式规划可化为如下的线性规划线性规划1w8w15w4w4w5w27824w2w4w15622w8w15w41260.t.s1260hmax32132

10、1213212132121211其对偶其对偶问题为问题为128612602422608428155415427154.t.sVmin321321321321321Dvvvuuh32121181541260max12415622321212vvvuuh14527824321213vvvuuh1v8v15v4u12u60h3212118 设vi为第i个指标xi的权重,ur为第r个产出yr指标的权重,则第j个企业投入的综合值为 ,产出的综合值为 其生产效率定义为:于是问题实际上是确定一组最佳的权变量v1,v2,v3和u1,u2,使第j个企业的效率值hj最大。这个最大的效率评价值是该企业相对于其他企业

11、来说不可能更高的相对效率评价值。xvij31iiyurj21rr31iiji21rrjrjxvyuh 我们限定所有的hj值(j=1,2,3)不超过1,即maxhj1。这意味着,若第k个企业hk=1,则该企业相对于其他企业来说生产率最高,或者说这一系统是相对而言有效的;若hk1,那么该企业相对于其他企业来说,生产率还有待于提高,或者说这一生产系统还不是有效的。9 根据上述分析,可以建立确定任何一个企业(如第3 个企业即丙企业)的相对生产率最优化模型如下:3,2,1i,0,2,1r,03,2,1j,1.t.sHmaxvuhhirj31、评价决策单元技术和规模综合效率的、评价决策单元技术和规模综合效

12、率的C2R模型模型 设有n个同类型的企业(也称决策单元),对于每个企业都有m种类型的“输入”(表示该单元对“资源”的消耗)以及p种类型的“输出”(表示该单元在消耗了“资源”之后的产出)。这n个企业及其输入-输出关系如下:10:y1ny2n:ypny1jy2j:ypj:y12y22:yp2y11y21:yp1u1u2:up12:p输出x1nx2n:xmnx1jx2j:xmj:x12x22:xm2x11x21:xm1v1v2:vm12:m输入nj21 部门指标 权数每个决策单元的效率评价指数定义为:m1iijip1rrjrjxvyuhj=1,2,n11而第j0个决策单元的相对效率优化评价模型为:上

13、述模型中xij,yrj为已知数(可由历史资料或预测数据得到),vi,ur为变量。模型的含义是以权系数vi,ur为变量,以所有决策单元的效率指标hj为约束,以第j0个决策单元的效率指数为目标。即评价第j0个决策单元的生产效率是否有效,是相对于其他所有决策单元而言的。m1i0ijip1r0rjr0jxvyuhmax s.t.vi,ur0,i=1,2,m;r=1,2,p n,.,2,1j,1m1iijip1rrjrxvyu(1)12 这是一个分式规划模型,我们必须将它化为线性规划模型才能求解。为此,令 m1i0ijixv1tvwiiturrt则模型(1)转化为:p,.,2,1r;m,.2,1i,0,

14、1n,.,2,1j,0.t.swxwxwyyhmaxir0ijm1iip1rm1iijirjrp1r0rjr0 j(2)13p,.,2,1r;m,.2,1i,0,1n,.,2,1j,0.t.swxwxwyyhmaxir0ijm1iip1rm1iijirjrp1r0rjr0 j(2)写成向量形式有:njXXYtsYhTjTjTTj,.,2,10,010.max00014其对偶问题为:无约束,0p,.,2,1r,m,.,2,1i,.t.sminjn1j0rrjjn1j0iijjDyyxxv(3)写成向量形式有:,0,0,0jn1j0jj0jn1jjssysyxsxs.t.无约束(4)min15设问

15、题(4)的最优解为*,s*-,s*+,*,则有如下结论:(1)若*=1,则DMUj0为弱DEA有效(总体)。(2)若*=1,且s*-=0,s*+=0,则DMUj0为DEA有效(总体)(3)令 0=*x0-s*-,0=y0+s*+,则为在有效前沿面上的投影,相对于原来的n个DMU是有效(总体)的。x y x y(4)若存在j*(j=1,2,m),使 =1成立,则DMUj0为规模效益不变;若不存在j*(j=1,2,m),使 =1成立,则 1 DMUj0为规模效益递减。n1j*jn1j*jn1j*jn1j*jn1j*j16有效解的解释:有效解的解释:F(X)=f1(X),f2(X),fn(X)如对于

16、求极大(max)型,其各种解定义如下:绝对最优解:若对于任意的X,都有F(X*)F(X)有效解:若不存在X,使得F(X*)F(X)弱有效解:若不存在X,使得F(X*)F(X)1718P63例例28 以以1997年全部独立核算企业为对象年全部独立核算企业为对象,对安徽、江西对安徽、江西、湖南和湖北四省进行生产水平的比较。投入要素取固定、湖南和湖北四省进行生产水平的比较。投入要素取固定资产净值年平均余额资产净值年平均余额(亿元亿元),流动资金年平均余额及从业人流动资金年平均余额及从业人员员(万人万人),产出要素取总产值产出要素取总产值(亿元亿元)和利税总额和利税总额(亿元亿元).安徽安徽江西江西湖

17、南湖南湖北湖北固定资产固定资产932.66583.08936.841306.56流动资金流动资金980.45581.64849.311444.30从业人员从业人员401.8294.2443.20461.00利税总额利税总额179.2949.76144.20181.41总产值总产值2196.09930.221659.042662.21全要素相对生产率全要素相对生产率(即即DEA评价值评价值)1.0000.71400.92851.000排序排序1321191.建立评价湖南省的建立评价湖南省的DEA模型如下模型如下 无约束无约束,004.1659s21.266204.165922.93009.219

18、620.144s410.18120.144760.4929.17920.443s000.46120.44320.24980.40131.849s40.144431.84964.58145.98084.936s56.130684.93608.58366.932.t.sVminj2432114321343212432114321D求解结果为求解结果为:24.107s,0s,17.88s,0s,71.119s,0,8043.0,9285.0213214321 调整方案为调整方案为:输入调整前输入调整前输入调整后输入调整后输出调整前输出调整前输出调整后输出调整后936.84936.84*0.9285-

19、119.71=750.15144.20144.20849.31849.31*0.9285=788.581659.041659.04+107.24=1766.28443.20443.2*0.9285-88.17=323.34202、具有非阿基米德无穷小的C2R模型在评价决策单元是否为DEA有效时,如果利用原线性规划问题njXXYtsYhTjTjTTj,.,2,10,010.max000需要判断是否存在最优解 ,满足00,1,0,000000Yhj如果利用对偶线性规划0,0.min1010SSYSYXSXtsjnjjjnjjj需要判断它的所有最优解都满足1,0,0000SS 无论是对于线性规划还是

20、对于对偶规划,这都是不容易做到的。因此Charnes 和Cooper引入了非阿基米德无穷小的概念,利用线性规划方法求解。去判断决策单元的DEA有效性。21令是非阿基米德无穷小量,它是一个小于任何正数、且大于零的数。考虑带有非阿基米德无穷小的C2R模型:njeeXXYtsYhTTTTTjTjTTj,.,2,110.max000对偶问题为:0,0.)(min1010SSYSYXSXtsSeSejnjjjnjjjTT其中smTEeEe)1,.,1,1()1,.,1,1(225、DEA有效性的经济含义有效性的经济含义考虑投入量为 ,产出量为 的某种生产活动。我们的目的是根据所观察到的生产活动(xj,y

21、j),j=1,2,n,去描述生产可能集,特别是根据这些观察数据去确定哪些生产活动是相对有效的。TmxxxX),.,(21TsyyyY),.,(21生产可能集生产可能集定义为:T=(X,Y)|产出向量Y可以由投入向量X生产出来因此,生产可能集可确定为:njnjjjjjjYyXxYXT110,|),(23有效性定义:有效性定义:对任何一个决策单元,它达到对任何一个决策单元,它达到100%的效率是的效率是指:在现有的输入条件下,任何一种输出都无法增加,指:在现有的输入条件下,任何一种输出都无法增加,除非同时降低其他种类的输出;要达到现有的输出,任除非同时降低其他种类的输出;要达到现有的输出,任何一种

22、输入都无法降低,除非同时增加其他种类的输入。何一种输入都无法降低,除非同时增加其他种类的输入。一个决策单元达到了一个决策单元达到了100%的效率,该决策单元就是有效的的效率,该决策单元就是有效的,也就是有效的决策单元。,也就是有效的决策单元。无效性定义无效性定义:(1)对任意(X,Y)T,并且 ,均有(2)对任意(X,Y)T,并且 ,均有这就是说,以较多的输入或较少的输出进行生产总是可能的。XX YY TYX),(TYX),(24既是技术有效,也是规模有效 下面我们以单输入单输出的情况来说明下面我们以单输入单输出的情况来说明DEA有效性的有效性的经济含义。首先叙述生产函数的概念。生产函数经济含

23、义。首先叙述生产函数的概念。生产函数Y=f(X)表示在生产处于最好的理想状态时,当投入量为表示在生产处于最好的理想状态时,当投入量为X,所能获所能获得的最大输出得的最大输出.因此因此,生产函数图象上的点生产函数图象上的点(X表示输入表示输入,Y表示表示输出输出)所对应的决策单元所对应的决策单元,从生产函数的角度看从生产函数的角度看,是处于是处于“技技术有效术有效”的状态的状态.一般来说生产函数的图象如下一般来说生产函数的图象如下:ABC既不是技术有效,也不是规模有效技术有效,但不是规模有效25我们现在来研究在模型我们现在来研究在模型C2R之下的之下的DEA有效性的经济含义有效性的经济含义.检验

24、决策单元检验决策单元j0的的DEA有效性有效性,即考虑线性规划问题即考虑线性规划问题:njYYXXtsjnjjjnjjj.,2,1,0.min1010TYX),(00由于 ,即 满足),(00YXnjjjnjjjYYXX1010 可以看出可以看出,线性规划是表示在生产可能集线性规划是表示在生产可能集T内内,当产出当产出Y0保持不变的情况下保持不变的情况下,尽量将投入量尽量将投入量X0按同一比例按同一比例减少减少.如如果投入量果投入量X0不能按同一比例不能按同一比例减少减少,即线性规划的最优值即线性规划的最优值=1,在单输入与单输出的情况下在单输入与单输出的情况下,决策单元决策单元j0既为技术有

25、效既为技术有效,也为规模有效也为规模有效.反之反之,如果投入量如果投入量X0能按同一比例能按同一比例减少减少,即即线性规划的最优值线性规划的最优值1,在单输入与单输出的情况下在单输入与单输出的情况下,决策决策单元单元j0不为技术有效不为技术有效,或不为规模有效或不为规模有效.26例题例题:下面是具有下面是具有3个决策单元的单输入数据和单输出数据个决策单元的单输入数据和单输出数据.相应决策单元所对应的点以相应决策单元所对应的点以A,B,C表示表示,其中点其中点A、C在生产在生产曲线上曲线上,点点B在生产曲线下方。由在生产曲线下方。由3个决策单元所确定的生产个决策单元所确定的生产可能集可能集T也在

26、图中标出来。也在图中标出来。2 4 52 1 3.5输入输出A(2,2)B(4,1)C(3,5)Y=Y(X)对于决策点A,它是“技术有效”和“规模有效”,它所对应的C2R模型为0,25.322542.min321321321ts其最优解为:1,)0,0,1(00T272 4 52 1 3.5输入输出A(2,2)B(4,1)C(3,5)Y=Y(X)对于决策点B,它不是“技术有效”,因为点B不在生产函数曲线上,也不是“规模有效”,这是因为它的投资规模太大.0,15.324542.min321321321ts其最优解为:4/1,)0,0,2/1(00T其对应的C2R模型如下:由于1,故B点不是DEA

27、有效,由 ,知该部门的规模收益是递减的.3100121jj282 4 52 1 3.5输入输出A(2,2)B(4,1)C(3,5)Y=Y(X)0,5.35.325542.min321321321ts其最优解为:10/7,)0,0,4/7(00T对于决策点C,因为点C是在生产函数曲线上,它是“技术有效”,但由于它的投资规模太大,所以不是“规模有效”.其对应的C2R模型如下:由于1,故C点不是DEA有效,由 ,知该部门的规模收益是递减的.31001251jj29二、评价技术有效性的二、评价技术有效性的C2GS2模型模型考虑一对线性规划对偶问题:考虑一对线性规划对偶问题:njXXYtsYVTjTjT

28、TP,.,2,10,010.max0000(P)0,01.min11010SSYSYXSXtsVjnjjnjjjnjjjD(D)该模型计算出的DMU效率是纯技术效率,反映DMU的纯技术效率状况,称为纯技术效率。设问题的最优解为*,s*-,s*+,*,则有如下结论:(1)若*=1,则DMUj0为弱DEA有效(C2GS2纯技术)。(2)若*=1,且s*-=0,s*+=0,则DMUj0为DEA有效(C2GS2纯技术)。30线性规划线性规划(D)的经济解释是的经济解释是:在生产可能集在生产可能集T内内,当产出当产出Y0保持不变的情况下保持不变的情况下,尽量将尽量将投入量投入量X0按同一比例按同一比例减

29、少减少.如果投入量如果投入量X0不能按同一比例不能按同一比例减少减少,即线性规划的即线性规划的最优值最优值=1,在单输入与单输出的情况下在单输入与单输出的情况下,决策单元决策单元j0既为技术有效既为技术有效.反之反之,如果投入如果投入量量X0能按同一比例能按同一比例减少减少,即线性规划的即线性规划的最优值最优值1,在单输入与单输出的情况下在单输入与单输出的情况下,决策单元决策单元j0不为技术有效不为技术有效.C2GS2模型的经济解释模型的经济解释:0,01.min11010SSYYXXtsVjnjjnjjjnjjjD(D)在这里之所以与在这里之所以与C2R模型的情况不同模型的情况不同,是因为生

30、产可能集是因为生产可能集T的构成不满足的构成不满足“锥性锥性”的公理假设的公理假设.“锥性锥性”的公理假设的公理假设:对任意对任意(X,Y)T,及数及数k0,均有均有这就是说这就是说,若以投入量若以投入量X的的k倍进行输入倍进行输入,那么产出量也以原那么产出量也以原来产出来产出Y的的k倍产出是可能的倍产出是可能的.TkYkXYXk),(),(31具有非阿基米德无穷小的模型为具有非阿基米德无穷小的模型为:0,01.)(min11010SSYSYXSXtsSeSeVjnjjnjjjnjjjTTDnjeeXXYtsYVTTTTjTjTTP,.,2,110.max0000(P)(D)32例题例题:考虑

31、具有一个输入和一个输出的问题考虑具有一个输入和一个输出的问题,它们由下表给它们由下表给出出:1 3 42 3 1输入输出考察决策单元考察决策单元1,相应的线性规划模型为相应的线性规划模型为:0,123243.min321321321321ssts其最优解为:0,1,)0,0,1(00ssT知决策单元1为DEA有效(C2GS2)331 3 42 3 1输入输出考察决策单元考察决策单元2,相应的线性规划模型为相应的线性规划模型为:0,1332343.min321321321321ssts其最优解为:0,1,)0,1,0(00ssT知决策单元2为DEA有效(C2GS2)341 3 42 3 1输入输

32、出考察决策单元考察决策单元3,相应的线性规划模型为相应的线性规划模型为:0,1132443.min321321321321ssts其最优解为:1,0,4/1,)0,0,1(00ssT知决策单元3不为DEA有效(C2GS2)T(1,2)(3,3)(4,1)351 3 42 3 1输入输出对于决策单元对于决策单元2,为为DEA有效有效(C2GS2),但却不是但却不是DEA(C2R)有有效效.0,332343.min321321321ssts其最优解为:21,)0,0,23(00T知决策单元2不为DEA有效(C2R)T(1,2)(3,3)(4,1)T(1,2)(3,3)(4,1)其其C2R模型为模型

33、为:36三、评价第三、评价第j0决策单元决策单元DMU纯规模效率模型为:纯规模效率模型为:*s(6)根据DEA的理论,总体效率*、纯技术效率*、纯规模效率s*三个参数之间存在(6)式所述的关系,由(6)可直接计算DMU的纯规模效率。37四、具有锥比率的四、具有锥比率的C2WH模型模型假设有假设有n个决策单元对应的输入数据和输出数据如下个决策单元对应的输入数据和输出数据如下XY1 2 nm1s1矩阵为nmxxxXn),.,(21矩阵为nsyyyYs),.,(21 VEVmint,并且为闭凸锥 UEUsint,并且为闭凸锥为闭凸锥nEK则则C2WH模型如下:模型如下:njUVXKYXtsYVTjT

34、jTTP,.,2,1,1.max00 38则则C2WH模型如下:模型如下:njUVXKYXtsYVTjTjTTP,.,2,1,1.max00 (P)结论结论:(1)若规划若规划P存在最优解存在最优解 ,满足满足*0*0.minKUYYVXXtsVD (D)00,UVYVTpint,int,10000 100YVTp 则称决策单元则称决策单元j0为弱为弱DEA有效有效(C2WH)(2)若规划若规划P存在最优解存在最优解 ,满足满足00,则称决策单元则称决策单元j0为为DEA有效有效(C2WH)39使用凸锥去度量决策单元的使用凸锥去度量决策单元的DEA有效性时有效性时,相应的生产可能相应的生产可能

35、集为集为:),(),(),(|),(*KUVYXYXYXT其中其中,0|*VvvvvVT对任意,0|*UuuuuUT对任意,0|*KkkkkKT对任意若令若令nsmEKEUEV,则锥比率模型则锥比率模型(P)和和(D)化为化为C2R模型模型0,010.max00XYXtsYVTjTjTTP(P)000.min00YYXXtsVD(D)可见可见C2WH模型是模型是C2R模型的推广模型的推广.40例题例题:考虑具有二个输入和一个输出的问题考虑具有二个输入和一个输出的问题,它们由下表给它们由下表给出出:3 3 410 1 3 21 1 2 1输入输出在使用在使用C2R模型评价时模型评价时,决策单元决

36、策单元1,2,3均为均为DEA有效有效(C2R).以决策单元以决策单元2为例为例.其其C2R模型为模型为:0,13024023303010.max121211211211211211tsVp其最优解为其最优解为故为故为DEA有效有效(C2R)1,1,06361010PTV 41 我们知道我们知道,在使用在使用DEA方法评价部门间的相对有效性时方法评价部门间的相对有效性时,变量变量v表示对输入的权系数表示对输入的权系数,它表示各种不同输入之间的相它表示各种不同输入之间的相对重要对重要;变量变量u表示对输出的权系数表示对输出的权系数,表示各种不同输出之间表示各种不同输出之间的相对重要性的相对重要性

37、.于是于是,在在C2R模型中的线性规划模型中的线性规划(P)中的中的和和也具有同样的意义也具有同样的意义.在求线性规划问题在求线性规划问题(P)的最优解时的最优解时,实际实际上是选取对决策单元上是选取对决策单元j0最为有利的权系数最为有利的权系数.在很多实际问题在很多实际问题中中,每项输入每项输入(或输出或输出)的重要性是不尽相同的的重要性是不尽相同的(例如某项生产例如某项生产活动中输入可以是黄金和煤炭的情况活动中输入可以是黄金和煤炭的情况).因此因此,权系数的选取权系数的选取应该满足一定的限制应该满足一定的限制.在上述例子中在上述例子中,决策单元决策单元2是是DEA有效有效(C2R)时时,表

38、示输入项目表示输入项目1和输入项目和输入项目2的重要性之比是的重要性之比是3:10201 如果事先认为第一项输入与第二项输入的重要性之比为如果事先认为第一项输入与第二项输入的重要性之比为100201 则必须使用则必须使用C2WH模型模型,此时此时,对决策单元对决策单元2,有有:420,),(13024023303010.max121211211211211211VtsVTp其中0,010|),(22121 TV求解结果为求解结果为03225.0,3225.0,53225.0211 不为不为DEA有效有效(C2WH)下面讨论当下面讨论当V,U,K为多面凸锥时的为多面凸锥时的C2WH模型模型.令令

39、,.,2,1,0|1miaVimiii ,.,2,1,0|1sibUrsrrr mmmaaaA 21sssbbbB 21则有则有0|*0|*BuuUAvvV43AX1 AX2 AXn By1 By2 BYn1 2 nm1s 1因此因此,将将DEA模型转化为具模型转化为具有有 个输入和具有个输入和具有 个输出个输出的的DEA问题问题.而原始的模型转化为而原始的模型转化为:0,01)(0)()(.)(max00 AXBYAXtsBYVTjTjTTP(P)00)()(0)()(.min00 BYBYAXAXtsVD(D)因此因此,适当地选取多面凸锥适当地选取多面凸锥V和和U,以及以及K=En+,锥比

40、率的模型锥比率的模型C2WH相当于将原来的输入相当于将原来的输入-输出数据左乘矩阵输出数据左乘矩阵A和和B之后之后,新的新的“输入输入-输出数据输出数据”AX和和BY的的C2R模型模型.这种模型对于这种模型对于输入项目或输出项目过多的情况是特别有效的输入项目或输出项目过多的情况是特别有效的.ms44因为我们可以取因为我们可以取A的行数的行数 小于它的列数小于它的列数m,相应的取相应的取B的的行数行数 小于它的列数小于它的列数s,即取即取msssmm,此时的输入数目缩小为此时的输入数目缩小为 个个,输出数目缩小为输出数目缩小为 个个.DEA有效等价于一个具有输入数与输出数之和有效等价于一个具有输

41、入数与输出数之和(m+s)个目标的多个目标的多目标规划问题的目标规划问题的pareto有效解有效解.一般来说一般来说,目标函数的个数增目标函数的个数增多多,pareto有效解集合要扩大有效解集合要扩大.因此因此,过多的输入和输出数目过多的输入和输出数目,用用C2R模型进行效率评价时模型进行效率评价时,往往会出现绝大多数的决策单往往会出现绝大多数的决策单元都有是元都有是DEA有效有效.ms45例题例题:考虑具有二个输入和一个输出的问题考虑具有二个输入和一个输出的问题,它们由下表给它们由下表给出出:3 3 410 1 3 21 1 2 1输入输出在使用在使用C2R模型评价时模型评价时,决策单元决策单元1,2,3均为均为DEA有效有效(C2R).假如对两种不同类型的输入假如对两种不同类型的输入,它们它们 重要性不同重要性不同,可以认为重可以认为重要性之比为要性之比为:2121kk则取则取0,011011212211212121kkkkV2111kkA

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第一讲DEA模型课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|